Dive into the vast array of tools and services available to developers.

Posts under General subtopic

Post

Replies

Boosts

Views

Activity

"No Such Module" When Using Mergable Libraries In a Static XCFramework
I'm attempting to create a proof of concept of a static library, distributed as an XCFramework, which has two local XCFramework dependencies. The reason for this is because I'm working to provide a single statically linked library to a customer, instead of providing them with the static library plus the two dependencies. The Issue With a fairly simple example project, I'm not able to access any code from the static library without the complier throwing a "No such module" error and saying that it cannot find one of the dependent modules. Project Layout I have an example project that has some example targets with basic example code. Example Project on Github Target: FrameworkA Mach-0 Type: Dynamic Build Mergable Library: Yes Skip Install: No Build Libraries For Distribution: Yes Target: FrameworkB Mach-0 Type: Dynamic Build Mergable Library: Yes Skip Install: No Build Libraries For Distribution: Yes XCFrameworks are being generated from these two targets using Apple's recommendations. I've verified that the mergable metadata is present in both framework's Info.plist files. Each exposes a single struct which will return an example String. Finally I have my SDK target: Target: ExampleKit Mach-0 Type: Static Build Mergable Library: No Create Merged Binary: Manual Skip Install: No Build Libraries For Distribution: Yes The two .xcframework files are in the Target's folder structure as well. The "Link Binary With Libraries" build phase includes them and they're Required. Inside of the ExampleKit target, I have a single public struct which has two static properties which return the example strings from FrameworkA and FrameworkB. I then have another script which generates an XCFramework from this target. Expectations Based on Apple's documentation and the "Meet Mergable Libraries" WWDC session I would expect that I could make a simple iOS app, link the ExampleKit.xcframework, import ExampleKit inside of a file, and be able to access the single public struct present in ExampleKit. Unfortunately, all I get is "No such module FrameworkA". I would expect that FrameworkA and FrameworkB would have been merged into ExampleKit? I'm really unsure of where to go from here in debugging this. And more importantly, is this even a possible thing to do?
0
0
276
Mar ’25
macOS 虚拟机不能识别手机
Windows 10 使用 VirtualBox 创建的 Monterey 12.6.7 macOS 虚拟机不能识别到 iPhone 7 手机。 iPhone 7 已经连接到电脑主机 (win 10) 的 USB 3.0 口子,手机已经信任电脑。 在 win 10,我看到了 “此电脑\Apple iPhone”,就是说,宿主机识别到了 手机。 现在,开启macOS 虚拟机,虚拟机右下角的 usb 图标,显示并且勾选到了 "Apple Inc. iPhone [0901]",但虚拟机还是没看到手机设备,导致 Xcode 也看不到手机设备。 虚拟机运行后,插拔 iPhone 7 手机,通过 sudo log show --predicate 'eventMessage contains "usbmuxd"' --info 看到了报错信息: 2025-02-13 10:31:06.541201+0800 0xa3c Error 0x0 0 0 kernel: (Sandbox) 1 duplicate report for System Policy: usbmuxd(22583) deny(1) file-write-mode /private/var/db/lockdown 2025-02-13 10:31:07.090321+0800 0xf807 Error 0x0 140 0 sandboxd: [com.apple.sandbox.reporting:violation] System Policy: usbmuxd(22583) deny(1) file-write-mode /private/var/db/lockdown Violation: deny(1) file-write-mode /private/var/db/lockdown Process: usbmuxd [22583] Path: /usr/local/sbin/usbmuxd Load Address: 0x10564b000 Identifier: usbmuxd Version: ??? (???) Code Type: x86_64 (Native) Parent Process: sudo [22582] Responsible: /System/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal User ID: 0 Date/Time: 2025-02-13 10:31:06.793 GMT+8 OS Version: macOS 12.6.7 (21G651) Release Type: User Report Version: 8 MetaData: {"vnode-type":"DIRECTORY","hardlinked":false,"pid":22583,"process":"usbmuxd","primary-filter-value":"/private/var/db/lockdown","platform-policy":true,"binary-in-trust-cache":false,"path":"/private/var/db/lockdown","primary-filter":"path","action":"deny","matched-extension":false,"process-path":"/usr/local/sbin/usbmuxd","file-flags":0,"responsible-process-path":"/System/Applications/Utilities/Terminal.app/Contents/MacOS/Terminal","flags":21,"platform-binary":false,"rdev":0,"summary":"deny(1) file-write-mode /private/var/db/lockdown","target":"/private/var/db/lockdown","mount-flags":76582912,"profile":"platform","matched-user-intent-extension":false,"apple-internal":false,"storage-class":"Lockdown","platform_binary":"no","operation":"file-write-mode","profile-flags":0,"normalized_target":["private","var","db","lockdown"],"file-mode":448,"errno":1,"build":"macOS 12.6.7 (21G651)","policy-description":"System Policy","responsible-process-signing-id":"com.apple.Terminal","hardware":"Mac","uid":0,"release-type":"User"} Thread 0 (id: 63477): 0 libsystem_kernel.dylib 0x00007ff80d8368ae __chmod + 10 1 usbmuxd 0x000000010565584e main + 3582 (main.c:816) 2 dyld 0x0000000114e3f52e start + 462 Binary Images: 0x10564b000 - 0x10565afff usbmuxd (0) <0fc9b657-d311-38b5-bf02-e294b175a615> /usr/local/sbin/usbmuxd 0x114e3a000 - 0x114ea3567 dyld (960) <2517e9fe-884a-3855-8532-92bffba3f81c> /usr/lib/dyld 0x7ff80d832000 - 0x7ff80d869fff libsystem_kernel.dylib (8020.240.18.701.6) /usr/lib/system/libsystem_kernel.dylib 2025-02-13 10:35:39.751714+0800 0x27f Default 0x0 0 0 kernel: (Sandbox) Sandbox: usbmuxd(119) allow iokit-get-properties kCDCDoNotMatchThisDevice 2025-02-13 10:35:45.025063+0800 0x27f Default 0x0 0 0 kernel: (Sandbox) Sandbox: usbmuxd(119) allow iokit-get-properties kCDCDoNotMatchThisDevice
0
0
582
Feb ’25
Promotional Offer keeps returning Contact Developer (Error code: 3903)
I am trying to add promotional offers in my iOS App. The signature is being verified through a google cloud function. My user id, signature, and product and offerIds return perfect. Promotional offer appears in the payment sheet as well. When applying for payment, the "ding" sound comes as well. But then I get the UIAlert with Unable to Purchase Contact developer. Error code in logs is 3903
0
0
82
Dec ’25
Developing First Ever IOS App - Have Very Specific Questions to Unblock my Testing
I have developed an app that I had been testing on the hardware device with the developer profile signed builds, I had setup a CloudKit container in development mode and also had tested with Production mode and they are working as expected. I have also tested storekit auto renewal subscriptions using Storekit Config file and all of that is working on the hardware device with the developer profile signed builds. Now comes the Fun Part, I want to use the Distribution profile to test the app for production readiness, I had created a distribution profile and had set that up in the Release under target of the app in Xcode, I have also created sandbox tester account (which is showing inactive even after 7 days - though I am also logged in with this sandbox tester account on a hardware device and under developer setting it shows as a sandbox tester account) All the subscriptions are showing Ready to Submit in the App Store Connect. I need help understand this whole flow, how to ensure I can test CloudKit and storekit for production readiness and then publish my app for the review. Thank you.
0
0
316
Feb ’25
Cannot Install Developer Beta Update OTA or IPSW
I’m a registered iOS developer, and I’ve been facing an issue with installing iOS developer updates for the past couple of years. I can download the updates, but they get stuck at 99.9% complete and don’t finish. I’ve tried following the instructions to force restart the phone, but it stays on the Apple logo screen until it dies. I can update official iOS versions, but not beta versions. To update, I have to put the phone in DFU mode and install the update that way. This is frustrating and prevents me from making timely updates to my app and from diagnosing new issues during testing. I’d like to request that Apple investigate this issue and identify a solution. For reference, I’ve installed a bare-bones version with no new apps, and the problem persists. I would like a resolution that allows me to update normally without having to DFU the phone each time. This occurs via OTA or IPSW manual download and installation. Please refer to the following FB submission numbers: FB21642029 and FB21017894. CAN SOMEONE PLEASE RESPOND BACK TO THIS MESSAGE AND HELP ME TROUBLESHOOT THIS ISSUE?!
0
0
33
1w
Symbol not found: NSUserActivityTypeLiveActivity and WidgetCenter.UserInfoKey.activityID
The app I'm working on has iOS 16.0 as target. Recently Live Activities support was added, but then it started crashing when running on iOS 16.0 devices. After some investigation, I've found that the culprit was the presence of NSUserActivityTypeLiveActivity and WidgetCenter.UserInfoKey.activityID, even though they were inside an @available(iOS 17.2, *) block. If I comment these two variables, the app work as expected. I've also tried adding #if canImport(ActivityKit) around the code, but without success. But if the @available isn't working, how can I prevent this? It looks like a bug, since the documentation says that NSUserActivityTypeLiveActivity is supported but iOS 14.0+, but I'm pretty sure it was introduced on 16.1. This is the only output I get with the crash: dyld[66888]: Symbol not found: _$s9WidgetKit0A6CenterC11UserInfoKeyV10activityIDSSvgZ Referenced from: <D6EFF120-2681-34C1-B261-8F3F7B388238> /Users/<redacted>/Library/Developer/CoreSimulator/Devices/8B5B4DC9-3D54-4C91-8C88-E705E851CA0F/data/Containers/Bundle/Application/DB6671FF-CB07-4570-BD63-C851D94FAF29/<redacted>.app/<redacted>.debug.dylib Expected in: <C5E72BB5-533F-3658-A987-E849888F4DFC> /Library/Developer/CoreSimulator/Volumes/iOS_20A360/Library/Developer/CoreSimulator/Profiles/Runtimes/iOS 16.0.simruntime/Contents/Resources/RuntimeRoot/System/Library/Frameworks/WidgetKit.framework/WidgetKit
0
0
109
Mar ’25
Device token for DeviceCheck API
Hi all, I'm trying to integrate Apple’s DeviceCheck API into my Flutter iOS app. I already have everything set up on the backend — the Apple private key, key ID, team ID, and DeviceCheck capability. The backend is generating and signing the JWT correctly and making requests to Apple. However, I’m currently stuck on the frontend (Flutter): 👉 How can I generate the device_token required by the DeviceCheck API (via DCDevice.generateToken) in a Flutter iOS app? I understand that DCDevice.generateToken() must be called from native Swift code. I previously attempted to use a MethodChannel to bridge this in Swift, but would prefer not to write or maintain native Swift code if possible. I've looked for a prebuilt Flutter package to handle this, but nothing exists or is up-to-date on pub.dev. Main Question: Is there any Apple-supported way to generate the device_token for DeviceCheck from a Flutter app without writing Swift code manually? If not, is DCDevice.generateToken() the only possible approach, and must I implement this via Swift and Flutter platform channels? Thanks!
0
0
171
Apr ’25
macOS .chm viewer
For the Linux version of my application which is written in C++ using Qt, I display the CHM format help files with this code: QString helpFile{ QCoreApplication::applicationDirPath() + "/Help/" + tr("DeepSkyStacker Help.chm","IDS_HELPFILE") }; QString program{ "kchmviewer" }; QStringList arguments{ "-token", "com.github.deepskystacker", helpFile }; helpProcess->startDetached(program, arguments); (helpProcess is a pointer to a QProcess object) The -token com.github.deepskystackerpart of that ensures that only a single instance of the viewer is used for any code that uses that invocation. Are there any chm file viewers for macOS that are capable of that sort of trick? The ones I've found on the App Store give minimal information and appear to be very simple minded tools that are not not intended for integration into an application as above. I know that MacPorts offers ports of kchmviewer but I'd prefer not to use either that or HomeBrew ... David
0
0
129
Jun ’25
"Application has not loaded accessibility" timeout followed by silent auto-recovery corrupts framework state on iOS 18
On iOS 18, when XCUITest encounters an "Application has not loaded accessibility" error after the 60 second timeout, it performs an undocumented auto-recovery ("Setting up automation session") instead of halting the test as documented. This leaves the XCUITest framework in a corrupted state, causing subsequent tests in the same session to fail with unexpected behavior. Expected Behavior (per Apple documentation): Any failure in the launch sequence will be reported as a test failure and the test will be halted at that point. Actual Behavior: XCUITest waits 60 seconds for accessibility to load Logs "Application has not loaded accessibility" error Instead of halting, performs "Setting up automation session" (auto-recovery) Test continues with corrupted framework state Subsequent tests in the same session fail with phantom element queries Steps Run XCUITest suite on a real iOS 18 device Have an app with moderately heavy initialization (e.g., synchronous network operations during bootstrap) Observe intermittent "accessibility not loaded" errors When error occurs, subsequent tests fail with unexpected behavior Test Logs Evidence First test (accessibility failure + recovery): t = 11.11s Wait for accessibility to load t = 71.14s Capturing diagnostic spindump t = 76.24s Assertion Failure: Application 'com.example.app' has not loaded accessibility t = 76.26s Setting up automation session ← Undocumented recovery t = 77.29s Tear Down Second test (corrupted state): t = 35.01s Tap "signin-button" t = 35.55s Waiting for "bannerButtonStackFirstItem" ← Query NOT in test code! t = 40.58s Assertion Failure: Failed to find element The second test executes element queries that do not exist in its source code, indicating leaked/corrupted state from the previous test's failed recovery. Note: The tearDown() method terminates the app but cannot reset the internal state of the XCUITest framework itself, so corruption persists across tests. We are observing this behavior consistently on iOS 18 real devices. We would like to know: Is this a known issue with XCUITest on iOS 18? Is anyone experiencing similar "accessibility not loaded" failures followed by auto-recovery? Is the "Setting up automation session" recovery behavior intentional or a bug? Is there a recommended workaround to prevent framework state corruption between tests?
0
1
119
2w
Xcode Cloud - Base Configuration Reference
Hello, I'm building this mobile app using Quasar - Capacitor on iOS. The app is working perfectly, but I'm encountering an issue whenever I push the rep I get this error: "Error Unable to open base configuration reference file '/Volumes/workspace/repository/ios/App/Pods/Target Support Files/Pods-App/Pods-App.release.xcconfig'. App.xcodeproj:1" I've tried every possible solution and made sure that everything is set perfectly. Can anyone please help me with that? Thanks in advance, appreciate you 🫶🏻
0
0
165
Oct ’25
Is there a way to limit the MusicKit JWT tokens to just the Apple Music API using scopes?
Hi, I'm generating MusicKit JWT tokens on my backend side and using it on the client side to query the Apple Music API. One concern I have is accidentally over issuing the scope of this JWT, resulting in accidental access more services than intended like DeviceCheck or APNS. Other than using separate keys for MusicKit and other services, is there a way to limit the generated JWT to only the Apple Music API (https://api.music.apple.com/v1/*) using the JWT payload scope?
0
0
124
May ’25
Testing and Debugging Code Running in the Background
I regularly bump into folks confused by this issue, so I thought I’d collect my thoughts on the topic into a single (hopefully) coherent post. If you have questions or comments, put them in a new thread here on the forums. Feel free to use whatever subtopic and tags that apply to your situation, but make sure to add the Debugging tag so that I see your thread go by. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Testing and Debugging Code Running in the Background I regularly see questions like this: My background code works just fine in Xcode but fails when I download the app from the App Store. or this: … or fails when I run my app from the Home screen. or this: How do I step through my background code? These suggest a fundamental misunderstanding of how the debugger interacts with iOS’s background execution model. The goal of this post is to explain that misunderstanding so that you can effectively test and debug background code. Note The focus of this post is iOS. The advice here generally applies to any of iOS’s ‘child’ platforms, so iPadOS, tvOS, and so on. However, there will be some platform specific differences, especially on watchOS. This advice here doesn’t apply to macOS. It’s background execution model is completely different than the one used by iOS. Understand the Fundamentals The key point to note here is that the debugger prevents your app from suspending. This has important consequences for iOS’s background execution model. Normally: iOS suspends your app when it’s in the background. Once your app is suspended, it becomes eligible for termination. The most common reason for this is that the system wants to recover memory, but it can happen for various other reasons. For example, the system might terminate a suspended app in order to update it. Under various circumstances your app can continue running after moving to the background. A great example of this is the continued processed task feature, introduced in iOS 26 beta. Alternatively, your app can be resumed or relaunched in the background to perform some task. For example, the region monitor feature of Core Location can resume or relaunch your app in the background when the user enters or leaves a region. If no app needs to be executing, the system can sleep the CPU. None of this happens in the normal way if the debugger is attached to your app, and it’s vital that you take that into account when debugging code that runs in the background. An Example of the Problem For an example of how this can cause problems, imagine an app that uses an URLSession background session. A background session will resume or relaunch your app in the background when specific events happen. This involves two separate code paths: If your app is suspended, the session resumes it in the background. If your app is terminated, it relaunches it in the background. Neither code path behaves normally if the debugger is attached. In the first case, the app never suspends, so the resume case isn’t properly exercised. Rather, your background session acts like it would if your app were in the foreground. Normally this doesn’t cause too many problems, so this isn’t a huge concern. On the other hand, the second case is much more problematic. The debugger prevents your app from suspending, and hence from terminating, and thus you can’t exercise this code path at all. Seek Framework-Specific Advice The above is just an example, and there are likely other things to keep in mind when debugging background code for a specific framework. Consult the documentation for the framework you’re working with to see if it has specific advice. Note For URLSession background sessions, check out Testing Background Session Code. The rest of this post focuses on the general case, offering advice that applies to all frameworks that support background execution. Run Your App Outside of Xcode When debugging background execution, launch your app from the Home screen. For day-to-day development: Run the app from Xcode in the normal way (Product > Run). Stop it. Run it again from the Home screen. Alternatively, install a build from TestFlight. This accurately replicates the App Store install experience. Write Code with Debugging in Mind It’s obvious that, if you run the app without attaching the debugger, you won’t be able to use the debugger to debug it. Rather: Extract the core logic of your code into libraries, and then write extensive unit tests for those libraries. You’ll be able to debug these unit tests with the debugger. Add log points to help debug your integration with the system. Treat your logging as a feature of your product. Carefully consider where to add log points and at what level to log. Check this logging code into your source code repository and ship it — or at least the bulk of it — as part of your final product. This logging will be super helpful when it comes to debugging problems that only show up in the field. My general advice is that you use the system log for these log points. See Your Friend the System Log for lots of advice on that front. One of the great features of the system log is that disabled log points are very cheap. In most cases it’s fine to leave these in your final product. Attach and Detach In some cases it really is helpful to debug with the debugger. One option here is to attach to your running app, debug a specific thing, and then detach from it. Specifically: To attach to a running app, choose Debug > Attach to Process > YourAppName in Xcode. To detach, choose Debug > Detach. Understand Force Quit iOS allows users to remove an app from the multitasking UI. This is commonly known as force quit, but that’s not a particularly accurate term: The multitasking UI doesn’t show apps that are running, it shows apps that have been run by the user. The UI shows recently run apps regardless of whether they’re in the foreground, running in the background, suspended, or terminated. So, removing an app from the UI may not actually quit anything. Removing an app sets a flag that prevents the app from being launched in the background. That flag gets cleared when the user next launches the app manually. Note In some circumstances iOS will not honour this flag. The exact cases where this happens are not documented and have changed over time. Keep these behaviours in mind as you debug your background execution code. For example, imagine you’re trying to test the URLSession background relaunch code path discussed above. If you force quit your app, you’ll never hit this code path because iOS won’t relaunch your app in the background. Rather, add a debug-only button that causes your app to call exit. IMPORTANT This suggestion is for debugging only. Don’t include a Quit button in your final app! This is specifically proscribed by QA1561. Alternatively, if you’re attached to your app with Xcode, simply choose Product > Stop. This is like calling exit; it has no impact on your app’s ability to run in the background. Test With Various Background App Refresh Settings iOS puts users in control of background execution via the options in Settings > General > Background App Refresh. Test how your app performs with the following settings: Background app refresh turned off overall Background app refresh turned on in general but turned off for your app Background app refresh turned on in general and turned on for your app IMPORTANT While these settings are labelled Background App Refresh, they affect subsystems other than background app refresh. Test all of these cases regardless of what specific background execution feature you’re using. Test Realistic User Scenarios In many cases you won’t be able to fully test background execution code at your desk. Rather, install a TestFlight build of your app and then use the device as a normal user would. For example: To test Core Location background execution properly, actual leave your office and move around as a user might. To test background app refresh, use your app regularly during the day and then put your device on charge at night. Testing like this requires two things: Patience Good logging The system log may be sufficient here, but you might need to investigate other logging solutions that are more appropriate for your product. These testing challenges are why it’s critical that you have unit tests to exercise your core logic. It takes a lot of time to run integration tests like this, so you want to focus on integration issues. Before starting your integration tests, make sure that your unit tests have flushed out any bugs in your core logic. Revision History 2025-08-12 Made various editorial changes. 2025-08-11 First posted.
0
0
209
Aug ’25
Determining Why a Symbol is Referenced
Recently a bunch of folks have asked about why a specific symbol is being referenced by their app. This is my attempt to address that question. If you have questions or comments, please start a new thread. Tag it with Linker so that I see it. Share and Enjoy — Quinn “The Eskimo!” @ Developer Technical Support @ Apple let myEmail = "eskimo" + "1" + "@" + "apple.com" Determining Why a Symbol is Referenced In some situations you might want to know why a symbol is referenced by your app. For example: You might be working with a security auditing tool that flags uses of malloc. You might be creating a privacy manifest and want to track down where your app is calling stat. This post is my attempt at explaining a general process for tracking down the origin of these symbol references. This process works from ‘below’. That is, it works ‘up’ from you app’s binary rather than ‘down’ from your app’s source code. That’s important because: It might be hard to track down all of your source code, especially if you’re using one or more package management systems. If your app has a binary dependency on a static library, dynamic library, or framework, you might not have access to that library’s source code. IMPORTANT This post assumes the terminology from An Apple Library Primer. Read that before continuing here. The general outline of this process is: Find all Mach-O images. Find the Mach-O image that references the symbol. Find the object files (.o) used to make that Mach-O. Find the object file that references the symbol. Find the code within that object file. Those last few steps require some gnarly low-level Mach-O knowledge. If you’re looking for an easier path, try using the approach described in the A higher-level alternative section as a replacement for steps 3 through 5. This post assumes that you’re using Xcode. If you’re using third-party tools that are based on Apple tools, and specifically Apple’s linker, you should be able to adapt this process to your tooling. If you’re using a third-party tool that has its own linker, you’ll need to ask for help via your tool’s support channel. Find all Mach-O images On Apple platforms an app consists of a number of Mach-O images. Every app has a main executable. The app may also embed dynamic libraries or frameworks. The app may also embed app extensions or system extensions, each of which have their own executable. And a Mac app might have embedded bundles, helper tools, XPC services, agents, daemons, and so on. To find all the Mach-O images in your app, combine the find and file tools. For example: % find "Apple Configurator.app" -print0 | xargs -0 file | grep Mach-O Apple Configurator.app/Contents/MacOS/Apple Configurator: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit executable x86_64] [arm64] … Apple Configurator.app/Contents/MacOS/cfgutil: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit executable x86_64] [arm64:Mach-O 64-bit executable arm64] … Apple Configurator.app/Contents/Extensions/ConfiguratorIntents.appex/Contents/MacOS/ConfiguratorIntents: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit executable x86_64] [arm64:Mach-O 64-bit executable arm64] … Apple Configurator.app/Contents/Frameworks/ConfigurationUtilityKit.framework/Versions/A/ConfigurationUtilityKit: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit dynamically linked shared library x86_64] [arm64] … This shows that Apple Configurator has a main executable (Apple Configurator), a helper tool (cfgutil), an app extension (ConfiguratorIntents), a framework (ConfigurationUtilityKit), and many more. This output is quite unwieldy. For nicer output, create and use a shell script like this: % cat FindMachO.sh #! /bin/sh # Passing `-0` to `find` causes it to emit a NUL delimited after the # file name and the `:`. Sadly, macOS `cut` doesn’t support a nul # delimiter so we use `tr` to convert that to a DLE (0x01) and `cut` on # that. # # Weirdly, `find` only inserts the NUL on the primary line, not the # per-architecture Mach-O lines. We use that to our advantage, filtering # out the per-architecture noise by only passing through lines # containing a DLE. find "$@" -type f -print0 \ | xargs -0 file -0 \ | grep -a Mach-O \ | tr '\0' '\1' \ | grep -a $(printf '\1') \ | cut -d $(printf '\1') -f 1 Find the Mach-O image that references the symbol Once you have a list of Mach-O images, use nm to find the one that references the symbol. The rest of this post investigate a test app, WaffleVarnishORama, that’s written in Swift but uses waffle management functionality from the libWaffleCore.a static library. The goal is to find the code that calls calloc. This app has a single Mach-O image: % FindMachO.sh "WaffleVarnishORama.app" WaffleVarnishORama.app/WaffleVarnishORama Use nm to confirm that it references calloc: % nm "WaffleVarnishORama.app/WaffleVarnishORama" | grep "calloc" U _calloc The _calloc symbol has a leading underscore because it’s a C symbol. This convention dates from the dawn of Unix, where the underscore distinguish C symbols from assembly language symbols. The U prefix indicates that the symbol is undefined, that is, the Mach-O images is importing the symbol. If the symbol name is prefixed by a hex number and some other character, like T or t, that means that the library includes an implementation of calloc. That’s weird, but certainly possible. OTOH, if you see this then you know this Mach-O image isn’t importing calloc. IMPORTANT If this Mach-O isn’t something that you build — that is, you get this Mach-O image as a binary from another developer — you won’t be able to follow the rest of this process. Instead, ask for help via that library’s support channel. Find the object files used to make that Mach-O image The next step is to track down which .o file includes the reference to calloc. Do this by generating a link map. A link map is an old school linker feature that records the location, size, and origin of every symbol added to the linker’s output. To generate a link map, enable the Write Link Map File build setting. By default this puts the link map into a text (.txt) file within the derived data directory. To find the exact path, look at the Link step in the build log. If you want to customise this, use the Path to Link Map File build setting. A link map has three parts: A simple header A list of object files used to build the Mach-O image A list of sections and their symbols In our case the link map looks like this: # Path: …/WaffleVarnishORama.app/WaffleVarnishORama # Arch: arm64 # Object files: [ 0] linker synthesized [ 1] objc-file [ 2] …/AppDelegate.o [ 3] …/MainViewController.o [ 4] …/libWaffleCore.a[2](WaffleCore.o) [ 5] …/Foundation.framework/Foundation.tbd … # Sections: # Address Size Segment Section 0x100008000 0x00001AB8 __TEXT __text … The list of object files contains: An object file for each of our app’s source files — That’s AppDelegate.o and MainViewController.o in this example. A list of static libraries — Here that’s just libWaffleCore.a. A list of dynamic libraries — These might be stub libraries (.tbd), dynamic libraries (.dylib), or frameworks (.framework). Focus on the object files and static libraries. The list of dynamic libraries is irrelevant because each of those is its own Mach-O image. Find the object file that references the symbol Once you have list of object files and static libraries, use nm to each one for the calloc symbol: % nm "…/AppDelegate.o" | grep calloc % nm "…/MainViewController.o" | grep calloc % nm "…/libWaffleCore.a" | grep calloc U _calloc This indicates that only libWaffleCore.a references the calloc symbol, so let’s focus on that. Note As in the Mach-O case, the U prefix indicates that the symbol is undefined, that is, the object file is importing the symbol. Find the code within that object file To find the code within the object file that references the symbol, use the objdump tool. That tool takes an object file as input, but in this example we have a static library. That’s an archive containing one or more object files. So, the first step is to unpack that archive: % mkdir "libWaffleCore-objects" % cd "libWaffleCore-objects" % ar -x "…/libWaffleCore.a" % ls -lh total 24 -rw-r--r-- 1 quinn staff 4.1K 8 May 11:24 WaffleCore.o -rw-r--r-- 1 quinn staff 56B 8 May 11:24 __.SYMDEF SORTED There’s only a single object file in that library, which makes things easy. If there were a multiple, run the following process over each one independently. To find the code that references a symbol, run objdump with the -S and -r options: % xcrun objdump -S -r "WaffleCore.o" … ; extern WaffleRef newWaffle(void) { 0: d10083ff sub sp, sp, #32 4: a9017bfd stp x29, x30, [sp, #16] 8: 910043fd add x29, sp, #16 c: d2800020 mov x0, #1 10: d2800081 mov x1, #4 ; Waffle * result = calloc(1, sizeof(Waffle)); 14: 94000000 bl 0x14 <ltmp0+0x14> 0000000000000014: ARM64_RELOC_BRANCH26 _calloc … Note the ARM64_RELOC_BRANCH26 line. This tells you that the instruction before that — the bl at offset 0x14 — references the _calloc symbol. IMPORTANT The ARM64_RELOC_BRANCH26 relocation is specific to the bl instruction in 64-bit Arm code. You’ll see other relocations for other instructions. And the Intel architecture has a whole different set of relocations. So, when searching this output don’t look for ARM64_RELOC_BRANCH26 specifically, but rather any relocation that references _calloc. In this case we’ve built the object file from source code, so WaffleCore.o contains debug symbols. That allows objdump include information about the source code context. From that, we can easily see that calloc is referenced by our newWaffle function. To see what happens when you don’t have debug symbols, create an new object file with them stripped out: % cp "WaffleCore.o" "WaffleCore-stripped.o" % strip -x -S "WaffleCore-stripped.o" Then repeat the objdump command: % xcrun objdump -S -r "WaffleCore-stripped.o" … 0000000000000000 <_newWaffle>: 0: d10083ff sub sp, sp, #32 4: a9017bfd stp x29, x30, [sp, #16] 8: 910043fd add x29, sp, #16 c: d2800020 mov x0, #1 10: d2800081 mov x1, #4 14: 94000000 bl 0x14 <_newWaffle+0x14> 0000000000000014: ARM64_RELOC_BRANCH26 _calloc … While this isn’t as nice as the previous output, you can still see that newWaffle is calling calloc. A higher-level alternative Grovelling through Mach-O object files is quite tricky. Fortunately there’s an easier approach: Use the -why_live option to ask the linker why it included a reference to the symbol. To continue the above example, I set the Other Linker Flags build setting to -Xlinker / -why_live / -Xlinker / _calloc and this is what I saw in the build transcript: _calloc from /usr/lib/system/libsystem_malloc.dylib _newWaffle from …/libWaffleCore.a[2](WaffleCore.o) _$s18WaffleVarnishORama18MainViewControllerC05tableE0_14didSelectRowAtySo07UITableE0C_10Foundation9IndexPathVtFTf4dnn_n from …/MainViewController.o _$s18WaffleVarnishORama18MainViewControllerC05tableE0_14didSelectRowAtySo07UITableE0C_10Foundation9IndexPathVtF from …/MainViewController.o Demangling reveals a call chain like this: calloc newWaffle WaffleVarnishORama.MainViewController.tableView(_:didSelectRowAt:) WaffleVarnishORama.MainViewController.tableView(_:didSelectRowAt:) and that should be enough to kick start your investigation. IMPORTANT The -why_live option only works if you dead strip your Mach-O image. This is the default for the Release build configuration, so use that for this test. Revision History 2025-07-18 Added the A higher-level alternative section. 2024-05-08 First posted.
0
0
1.4k
Jul ’25
AppleWatchのデベロッパモードをONにする方法
開発アプリで通知確認を行うため、UDIDをプロビジョニングプロファイルに追加する必要があります。 iPhoneのUDIDは取得することができたのですが、AppleWatchのUDIDを取得する方法が分かりません。 Xcodeと接続してUDIDを取得しようとしましたが、iPhoneのみ認識がされAppleWatchが認識されていません。 AppleWatchもデベロッパモードをONしなければならないとAppleから返答をもらったが、その方法がわからないのでどなたかご教授お願い致します。
0
0
168
Oct ’25
Game Porting Toolkit brew install issue
Hi, I’m having trouble installing GPT 1.1 on macOS Sequoia 15.3.1 using Xcode Command Line Tools 16.0. I downloaded Evaluation Environment for Windows Games 2.1, mounted the image, and opened the README file. Then, I followed Option 2 to build the environment from scratch: Set up your development and Homebrew environment Ensure you are using Command Line Tools for Xcode 15.1. You can download this older version from: https://developer.apple.com/downloads Note: There is a header file layout change that prevents using newer versions of the macOS SDK. softwareupdate --install-rosetta arch -x86_64 zsh /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" which brew brew tap apple/apple http://github.com/apple/homebrew-apple brew -v install apple/apple/game-porting-toolkit At first, I noticed that I needed to use CLT 15.1, which is not supported on later macOS versions (including mine). Even when I tried using 15.3 (which is somehow supported), I received a message stating that I needed CLT v16.0 or higher to install GPT. After following all the steps and waiting for the installation to complete, I got the following error: ==> Installing apple/apple/game-porting-toolkit ==> Staging /Users/tycjanfalana/Library/Caches/Homebrew/downloads/7baed2a6fd34b4a641db7d1ea1e380ccb2f457bb24cd8043c428b6c10ea22932--crossover-sources-22.1.1.tar.gz in /private/tmp/game-porting-toolkit-20250316-15122-yxo3un ==> Patching ==> /private/tmp/game-porting-toolkit-20250316-15122-yxo3un/wine/configure --prefix=/usr/local/Cellar/game-porting-toolkit/1.1 --disable-win16 --disable-tests --without-x --without-pulse --without-dbus --without-inotify --without-alsa --without-capi --without-oss --without-udev --without-krb5 --enable-win64 --with-gnutls --with-freetype --with-gstreamer CC=/usr/local/opt/game-porting-toolkit-compiler/bin/clang CXX=/usr/local/opt/game-porting-toolkit-compiler/bin/clang++ checking build system type... x86_64-apple-darwin24.3.0 checking host system type... x86_64-apple-darwin24.3.0 checking whether make sets $(MAKE)... yes checking for gcc... /usr/local/opt/game-porting-toolkit-compiler/bin/clang checking whether the C compiler works... no configure: error: in `/private/tmp/game-porting-toolkit-20250316-15122-yxo3un/wine64-build': configure: error: C compiler cannot create executables See `config.log' for more details ==> Formula Tap: apple/apple Path: /usr/local/Homebrew/Library/Taps/apple/homebrew-apple/Formula/game-porting-toolkit.rb ==> Configuration HOMEBREW_VERSION: 4.4.24 ORIGIN: https://github.com/Homebrew/brew HOMEBREW_PREFIX: /usr/local Homebrew Ruby: 3.3.7 => /usr/local/Homebrew/Library/Homebrew/vendor/portable-ruby/3.3.7/bin/ruby CPU: 14-core 64-bit westmere Clang: 16.0.0 build 1600 Git: 2.39.5 => /Library/Developer/CommandLineTools/usr/bin/git Curl: 8.7.1 => /usr/bin/curl macOS: 15.3.1-x86_64 CLT: 16.0.0.0.1.1724870825 Xcode: N/A Rosetta 2: true ==> ENV HOMEBREW_CC: clang HOMEBREW_CXX: clang++ CFLAGS: [..] Error: apple/apple/game-porting-toolkit 1.1 did not build Logs: /Users/xyz/Library/Logs/Homebrew/game-porting-toolkit/00.options.out /Users/xyz/Library/Logs/Homebrew/game-porting-toolkit/01.configure /Users/xyz/Library/Logs/Homebrew/game-porting-toolkit/01.configure.cc /Users/xyz/Library/Logs/Homebrew/game-porting-toolkit/wine64-build If reporting this issue, please do so to (not Homebrew/brew or Homebrew/homebrew-core): apple/apple In config.log, I found this: configure:4672: checking for gcc configure:4704: result: /usr/local/opt/game-porting-toolkit-compiler/bin/clang configure:5057: checking for C compiler version configure:5066: /usr/local/opt/game-porting-toolkit-compiler/bin/clang --version >&5 clang version 8.0.0 Target: x86_64-apple-darwin24.3.0 Thread model: posix InstalledDir: /usr/local/opt/game-porting-toolkit-compiler/bin configure:5077: $? = 0 configure:5066: /usr/local/opt/game-porting-toolkit-compiler/bin/clang -v >&5 clang version 8.0.0 Target: x86_64-apple-darwin24.3.0 Thread model: posix InstalledDir: /usr/local/opt/game-porting-toolkit-compiler/bin configure:5077: $? = 0 configure:5066: /usr/local/opt/game-porting-toolkit-compiler/bin/clang -V >&5 clang-8: error: argument to '-V' is missing (expected 1 value) clang-8: error: no input files configure:5077: $? = 1 configure:5066: /usr/local/opt/game-porting-toolkit-compiler/bin/clang -qversion >&5 clang-8: error: unknown argument '-qversion', did you mean '--version'? clang-8: error: no input files configure:5077: $? = 1 configure:5066: /usr/local/opt/game-porting-toolkit-compiler/bin/clang -version >&5 clang-8: error: unknown argument '-version', did you mean '--version'? clang-8: error: no input files configure:5077: $? = 1 configure:5097: checking whether the C compiler works configure:5119: /usr/local/opt/game-porting-toolkit-compiler/bin/clang [...] dyld[15547]: Symbol not found: _lto_codegen_debug_options_array Referenced from: <E33DCAC4-3116-3019-8003-432FB3E66FB4> /Library/Developer/CommandLineTools/usr/bin/ld Expected in: <43F5C676-DE37-3F0E-93E1-BF793091141E> /usr/local/Cellar/game-porting-toolkit-compiler/0.1/lib/libLTO.dylib clang-8: error: unable to execute command: Abort trap: 6 clang-8: error: linker command failed due to signal (use -v to see invocation) configure:5123: $? = 254 configure:5163: result: no configure: failed program was: | /* confdefs.h */ | #define PACKAGE_NAME "Wine" | #define PACKAGE_TARNAME "wine" | #define PACKAGE_VERSION "7.7" | #define PACKAGE_STRING "Wine 7.7" | #define PACKAGE_BUGREPORT "" | #define PACKAGE_URL "" | /* end confdefs.h. */ | | int | main (void) | { | | ; | return 0; | } configure:5168: error: in `/private/tmp/game-porting-toolkit-20250316-15122-yxo3un/wine64-build': configure:5170: error: C compiler cannot create executables See `config.log` for more details Does anyone have any ideas on how to fix this?
0
0
529
Mar ’25
Trouble setting up watches to use TestFlight that are AWFK configured
I am developing a simple watch app and I use my personal watch for development with Xcode. Personal watch is series 10 gps only. I have two other watches that I want to use for testing the app, but not needing them to be connected to Xcode. The test watches have cellular option, and I need a cell plan per watch because the watches need to be standalone, not counting initial setup. To get the standalone cell plan the watches need to be configured using AWFK. Here is what I have tried/current issues. I switch between all three watches on my phone using the watch app. Originally tried to put test watches in developer mode, thinking I would connect to Xcode, developer mode is not available when watch is setup using AWFK. Pushed the watch app to apple connect, setup TestFlight group, added the test users and my phone user, accepted invites TestFlight is installed on my phone, I see the testflight setup for the watch app I set a test watch using watch app on the phone, run install for the test app from TestFlight on the phone, spinner moves for awhile then goes back to Install. I am not able to get the watch app installed on the test watches from the phone. Is what I am attempting to do supported? I haven't found much specific documentation on this. If I pair the test watches as regular watches, set them to developer mode, can I pair them again as AWFK and will developer mode survive the switch? Or is there something really simple that I'm overlooking? Appreciate any help that can be extended.
0
0
172
Dec ’25
Extremely slow download speed for iOS 26.2 Simulator Runtime in Xcode
I am located in Taiwan and recently updated my Mac to the latest OS and installed the newest Xcode. However, I’m experiencing extremely slow download speeds when trying to add the iOS 26.2 Simulator Runtime (approx. 8GB) via Xcode > Settings > Platforms. It is currently downloading at a rate of only 500MB per hour, which is impractical. I have checked the official downloads page but couldn't find a standalone DMG link for this specific version. My questions are: Is there a direct download link (DMG) available on the Apple Developer portal for the iOS 26.2 Simulator? If no direct link exists, are there any recommended methods to accelerate the download? (e.g., using terminal commands or changing DNS settings). Any help or direct URLs would be greatly appreciated. Thank you!
0
0
210
2w