Hi,
I'm using LanguageModelSession and giving it two different tools to query data from a local database. I'm wondering how I can have the session generate structured content as the response that includes data one or both tools (or no tool at all).
Here is an example of what I'm trying to do:
Let's say the app has access to a database that contains information about exercise and sleep data (this is just an analogy). There are two tools, GetExerciseData() and GetSleepData(). The user may then prompt something like, "how well did I sleep in November". I have this working so that it calls through to the right tool, which would return a SleepSummary. However, I can't figure out how to have the session return the right structured data.
I can do this and get back good text data:
let response = session.respond(to: userInput), but I believe I want to do something like:
let response = session.respond(to: trimmed, generating: <SomeStructure?>) Sometimes the model I run one tool or the other, or both tools, or no tool at all.
Any help of what the right way to go about this would be much appreciated. Most of the example I found have to do with 1 tool.
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Created
It seems to be that Swift has more APIs implemented than the C++ interface (especially APIs found in the MLXNN and MLXOptimize folders). Is there any intention to implement more APIs for neural networks and training them in the future?
Got new iPhone Boxing Day all works bar image playground uninstalled/reinstalled turns ai on/off still stuck
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Hi Apple Engineers,
I am experiencing a potential memory management bug with CoreML on M1 Mac (32GB Unified Memory).
When processing long video files (approx. 12,000 frames) using a CoreML execution provider, the system often completes the 'Analysing' phase but fails to transition into 'Processing'. It simply exits silently or hits an import error (scipy).
However, if I split the same task into small 20-frame segments, it works perfectly at high speeds (~40 FPS). This suggests the hardware is capable, but there is an issue with memory fragmentation or resource cleanup during long-running CoreML sessions.
Is there a way to force a VRAM/Unified Memory flush via CLI, or is this a known limitation for large frame indexing?
hello,
Do you have any information on the handling of sparse matrix with MPS and PyTorch? release date? ...
We are developing Apple AI for overseas markets and adapting it for iPhone 17 and later models. When the system language and Siri language do not match—such as the system being in English while Siri is in Chinese—it may result in Apple AI being unusable. So, I would like to ask, how can this issue be resolved, and are there other reasons that might cause it to be unusable within the app?
Hi everyone,
I believe I’ve encountered a potential bug or a hardware alignment limitation in the Core ML Framework / ANE Runtime specifically affecting the new Stateful API (introduced in iOS 18/macOS 15).
The Issue:
A Stateful mlprogram fails to run on the Apple Neural Engine (ANE) if the state tensor dimensions (specifically the width) are not a multiple of 32. The model works perfectly on CPU and GPU, but fails on ANE both during runtime and when generating a Performance Report in Xcode.
Error Message in Xcode UI:
"There was an error creating the performance report Unable to compute the prediction using ML Program. It can be an invalid input data or broken/unsupported model."
Observations:
Case A (Fails): State shape = (1, 3, 480, 270). Prediction fails on ANE.
Case B (Success): State shape = (1, 3, 480, 256). Prediction succeeds on ANE.
This suggests an internal memory alignment or tiling issue within the ANE driver when handling Stateful buffers that don't meet the 32-pixel/element alignment.
Reproduction Code (PyTorch + coremltools):
import torch.nn as nn
import coremltools as ct
import numpy as np
class RNN_Stateful(nn.Module):
def __init__(self, hidden_shape):
super(RNN_Stateful, self).__init__()
# Simple conv to update state
self.conv1 = nn.Conv2d(3 + hidden_shape[1], hidden_shape[1], kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(hidden_shape[1], 3, kernel_size=3, padding=1)
self.register_buffer("hidden_state", torch.ones(hidden_shape, dtype=torch.float16))
def forward(self, imgs):
self.hidden_state = self.conv1(torch.cat((imgs, self.hidden_state), dim=1))
return self.conv2(self.hidden_state)
# h=480, w=255 causes ANE failure. w=256 works.
b, ch, h, w = 1, 3, 480, 255
model = RNN_Stateful((b, ch, h, w)).eval()
traced_model = torch.jit.trace(model, torch.randn(b, 3, h, w))
mlmodel = ct.convert(
traced_model,
inputs=[ct.TensorType(name="input_image", shape=(b, 3, h, w), dtype=np.float16)],
outputs=[ct.TensorType(name="output", dtype=np.float16)],
states=[ct.StateType(wrapped_type=ct.TensorType(shape=(b, ch, h, w), dtype=np.float16), name="hidden_state")],
minimum_deployment_target=ct.target.iOS18,
convert_to="mlprogram"
)
mlmodel.save("rnn_stateful.mlpackage")
Steps to see the error:
Open the generated .mlpackage in Xcode 16.0+.
Go to the Performance tab and run a test on a device with ANE (e.g., iPhone 15/16 or M-series Mac).
The report will fail to generate with the error mentioned above.
Environment:
OS: macOS 15.2
Xcode: 16.3
Hardware: M4
Has anyone else encountered this 32-pixel alignment requirement for StateType tensors on ANE? Is this a known hardware constraint or a bug in the Core ML runtime?
Any insights or workarounds (other than manual padding) would be appreciated.
With the release of the newest version of tahoe and MLX supporting RDMA. Is there a documentation link to how to utilizes the libdrma dylib as well as what functions are available? I am currently assuming it mostly follows the standard linux infiniband library but I would like the apple specific details.
Topic:
Machine Learning & AI
SubTopic:
General
Hi everyone,
I've been building an on-device AI safety layer called Newton Engine, designed to validate prompts before they reach FoundationModels (or any LLM). Wanted to share v1.3 and get feedback from the community.
The Problem
Current AI safety is post-training — baked into the model, probabilistic, not auditable. When Apple Intelligence ships with FoundationModels, developers will need a way to catch unsafe prompts before inference, with deterministic results they can log and explain.
What Newton Does
Newton validates every prompt pre-inference and returns:
Phase (0/1/7/8/9)
Shape classification
Confidence score
Full audit trace
If validation fails, generation is blocked. If it passes (Phase 9), the prompt proceeds to the model.
v1.3 Detection Categories (14 total)
Jailbreak / prompt injection
Corrosive self-negation ("I hate myself")
Hedged corrosive ("Not saying I'm worthless, but...")
Emotional dependency ("You're the only one who understands")
Third-person manipulation ("If you refuse, you're proving nobody cares")
Logical contradictions ("Prove truth doesn't exist")
Self-referential paradox ("Prove that proof is impossible")
Semantic inversion ("Explain how truth can be false")
Definitional impossibility ("Square circle")
Delegated agency ("Decide for me")
Hallucination-risk prompts ("Cite the 2025 CDC report")
Unbounded recursion ("Repeat forever")
Conditional unbounded ("Until you can't")
Nonsense / low semantic density
Test Results
94.3% catch rate on 35 adversarial test cases (33/35 passed).
Architecture
User Input
↓
[ Newton ] → Validates prompt, assigns Phase
↓
Phase 9? → [ FoundationModels ] → Response
Phase 1/7/8? → Blocked with explanation
Key Properties
Deterministic (same input → same output)
Fully auditable (ValidationTrace on every prompt)
On-device (no network required)
Native Swift / SwiftUI
String Catalog localization (EN/ES/FR)
FoundationModels-ready (#if canImport)
Code Sample — Validation
let governor = NewtonGovernor()
let result = governor.validate(prompt: userInput)
if result.permitted {
// Proceed to FoundationModels
let session = LanguageModelSession()
let response = try await session.respond(to: userInput)
} else {
// Handle block
print("Blocked: Phase \(result.phase.rawValue) — \(result.reasoning)")
print(result.trace.summary) // Full audit trace
}
Questions for the Community
Anyone else building pre-inference validation for FoundationModels?
Thoughts on the Phase system (0/1/7/8/9) vs. simple pass/fail?
Interest in Shape Theory classification for prompt complexity?
Best practices for integrating with LanguageModelSession?
Links
GitHub: https://github.com/jaredlewiswechs/ada-newton
Technical overview: parcri.net
Happy to share more implementation details. Looking for feedback, collaborators, and anyone else thinking about deterministic AI safety on-device.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Tags:
Swift Packages
Machine Learning
Apple Intelligence
I've built an iOS app with a novel approach to AI safety: a deterministic, pre-inference validation layer called Newton Engine.
Instead of relying on the LLM to self-moderate, Newton validates every prompt BEFORE it reaches the model. It uses shape theory and semantic analysis to detect:
• Corrosive frames (self-harm language patterns)
• Logical contradictions (requests that undermine themselves)
• Delegation attempts (asking AI to make human decisions)
• Jailbreak patterns (prompt injection, role-play escapes)
• Hallucination triggers (requests for fabricated citations)
The system achieves a 96% adversarial catch rate across 847 test cases, with zero false positives on benign prompts.
Key technical details:
• Pure Swift/SwiftUI, no external dependencies
• Runs entirely on-device (no server calls for validation)
• Deterministic (same input always produces same output)
• Auditable (full trace logging for every validation)
I'm preparing to submit to the App Store and wanted to ask:
Are there specific App Review guidelines I should reference for AI safety claims?
Is there interest from Apple in deterministic governance layers for Apple Intelligence integration?
Any recommendations for demonstrating safety compliance during review?
The app is called Ada, and the engine is open source at: github.com/jaredlewiswechs/ada-newton
Happy to share technical documentation or discuss the architecture with anyone interested.
See: parcri.net
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
We are developing Apple AI for foreign markets and adapting it for iPhone models 17 and above.
When the system language and Siri language are not the same—for example, if the system is in English and Siri is in Chinese—it can cause a situation where Apple AI cannot be used. So, may I ask if there are any other reasons that could cause Apple AI to be unavailable within the app, even if it has been enabled?
When the system language and Siri language are not the same, Apple AI may not be usable.
For example, if the system is in English and Siri is in Chinese, it may cause Apple AI to not work.
May I ask if there are other reasons why the app still cannot be used internally even after enabling Apple AI?
Hi everyone 👋
I'd like to use coremltools to see how well a model performs on a remote device as part of a CI/CD pipeline. According to the Core ML Tools "Debugging and Performance Utilities" guide, remote devices must be in a "connected" state in order for coremltools to install the ModelRunner application.
The devices in our system have a "paired" state, and I'm unable to set the them as "connected." The only way I know how to connect a device is to physically plug it in to a computer and open Xcode. I don't have physical access to the devices in the CI/CD system, and the host computer that interacts with them doesn't have Xcode installed.
Here are some questions I've been looking into and would love some help answering:
Has anyone managed to use the coremltools performance utilities in a similar system?
Can you put a device in a "connected" state if you don't have physical access to the device and if you only have access to Xcode command line tools and not the Xcode app?
Is it at all possible to install the coremltools ModelRunner application on a "paired" device, for example, by manually building the app and installing it with devicectl? Would other utilities, such as the MLModelBenchmarker work as expected if the app is installed this way?
Thank you!
I’d like to submit a feature request regarding the availability of Foundation Models in MessageFilter extensions.
Background
MessageFilter extensions play a critical role in protecting users from spam, phishing, and unwanted messages. With the introduction of Foundation Models and Apple Intelligence, Apple has provided powerful on-device natural language understanding capabilities that are highly aligned with the goals of MessageFilter.
However, Foundation Models are currently unavailable in MessageFilter extensions.
Why Foundation Models Are a Great Fit for MessageFilter
Message filtering is fundamentally a natural language classification problem. Foundation Models would significantly improve:
Detection of phishing and scam messages
Classification of promotional vs transactional content
Understanding intent, tone, and semantic context beyond keyword matching
Adaptation to evolving scam patterns without server-side processing
All of this can be done fully on-device, preserving user privacy and aligning with Apple’s privacy-first design principles.
Current Limitations
Today, MessageFilter extensions are limited to relatively simple heuristics or lightweight models. This often results in:
Higher false positives
Lower recall for sophisticated scam messages
Increased development complexity to compensate for limited NLP capabilities
Request
Could Apple consider one of the following:
Allowing Foundation Models to be used directly within MessageFilter extensions
Providing a constrained or optimized Foundation Model API specifically designed for MessageFilter
Enabling a supported mechanism for MessageFilter extensions to delegate inference to the containing app using Foundation Models
Even limited access (e.g. short text only, strict execution limits) would be extremely valuable.
Closing
Foundation Models have the potential to significantly raise the quality and effectiveness of message filtering on Apple platforms while maintaining strong privacy guarantees. Supporting them in MessageFilter extensions would be a major improvement for both developers and users.
Thank you for your consideration and for continuing to invest in on-device intelligence.
I'm using Vision framework (DetectFaceLandmarksRequest) with the same code and the same test image to detect face landmarks. On iOS 18 everything works as expected: detected face landmarks align with the face correctly.
But when I run the same code on devices with iOS 26, the landmark coordinates are outside the [0,1] range, which indicates they are out of face bounds.
Fun fact: the old VNDetectFaceLandmarksRequest API works very well without encountering this issue
How I get face landmarks:
private let faceRectangleRequest = DetectFaceRectanglesRequest(.revision3)
private var faceLandmarksRequest = DetectFaceLandmarksRequest(.revision3)
func detectFaces(in ciImage: CIImage) async throws -> FaceTrackingResult {
let faces = try await faceRectangleRequest.perform(on: ciImage)
faceLandmarksRequest.inputFaceObservations = faces
let landmarksResults = try await faceLandmarksRequest.perform(on: ciImage)
...
}
How I show face landmarks in SwiftUI View:
private func convert(
point: NormalizedPoint,
faceBoundingBox: NormalizedRect,
imageSize: CGSize
) -> CGPoint {
let point = point.toImageCoordinates(
from: faceBoundingBox,
imageSize: imageSize,
origin: .upperLeft
)
return point
}
At the same time, it works as expected and gives me the correct results:
region is FaceObservation.Landmarks2D.Region
let points: [CGPoint] = region.pointsInImageCoordinates(
imageSize,
origin: .upperLeft
)
After that, I found that the landmarks are normalized relative to the unalignedBoundingBox. However, I can’t access it in code. Still, using these values for the bounding box works correctly.
Things I've already tried:
Same image input
Tested multiple devices on iOS 26.2 -> always wrong.
Tested multiple devices on iOS 18.7.1 -> always correct.
Environment:
macOS 26.2
Xcode 26.2 (17C52)
Real devices, not simulator
Face Landmarks iOS 18
Face Landmarks iOS 26
v3 was released 2 years ago but developers are unable to convert models created with Keras v3 to CoreML
I'm using python 3.9.6, tensorflow 2.20.0, tensorflow-metal 1.2.0, and when I try to run
import tensorflow as tf
It gives
Traceback (most recent call last):
File "/Users/haoduoyu/Code/demo.py", line 1, in <module>
import tensorflow as tf
File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/__init__.py", line 438, in <module>
_ll.load_library(_plugin_dir)
File "/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Library not loaded: @rpath/_pywrap_tensorflow_internal.so
Referenced from: <8B62586B-B082-3113-93AB-FD766A9960AE> /Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Reason: tried: '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file), '/Users/haoduoyu/Code/test/lib/python3.9/site-packages/tensorflow-plugins/../_solib_darwin_arm64/_U@local_Uconfig_Utf_S_S_C_Upywrap_Utensorflow_Uinternal___Uexternal_Slocal_Uconfig_Utf/_pywrap_tensorflow_internal.so' (no such file)
As long as I uninstall tensorflow-metal, nothing goes wrong. How can I fix this problem?
Hi,
I am developing an iOS application that utilizes Apple’s Foundation Models to perform certain summarization tasks. I would like to understand whether user data is transferred to Private Cloud Compute (PCC) in cases where the computation cannot be performed entirely on-device.
This information is critical for our internal security and compliance reviews. I would appreciate your clarification on this matter.
Thank you.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hi everyone, I’m working on an iOS app that uses a Core ML model to run live image recognition. I’ve run into a persistent issue with the mlpackage not being turned into a swift class. This following error is in the code, and in carDetection.mlpackage, it says that model class has not been generated yet. The error in the code is as follows:
What I’ve tried:
Verified Target Membership is checked for carDetectionModel.mlpackage
Confirmed the file is listed under Copy Bundle Resources (and removed from Compile Sources)
Cleaned the build folder (Shift + Cmd + K) and rebuilt
Renamed and re-added the .mlpackage file
Restarted Xcode and re-added the file
Logged bundle contents at runtime, but the .mlpackage still doesn’t appear
The mlpackage is in Copy bundle resources, and is not in the compile sources. I just don't know why a swift class is not being generated for the mlpackage.
Could someone please give me some guidance on what to do to resolve this issue?
Sorry if my error is a bit naive, I'm pretty new to iOS app development
Topic:
Machine Learning & AI
SubTopic:
Core ML
Hi team,
I’m exploring the Model Context Protocol (MCP), which is used to connect LLMs/AI agents to external tools in a structured way. It's becoming a common standard for automation and agent workflows.
Before I go deeper, I want to confirm:
Does Apple currently provide any official MCP server, API surface, or SDK on iOS/macOS?
From what I see, only third-party MCP servers exist for iOS simulators/devices, and Apple’s own frameworks (Foundation Models, Apple Intelligence) don’t expose MCP endpoints.
Is there any chance Apple might introduce MCP support—or publish recommended patterns for safely integrating MCP inside apps or developer tools?
I would like to see if I can share my app's data to the MCP server to enable other third-party apps/services to integrate easily
Topic:
Machine Learning & AI
SubTopic:
General