Attempted to download the Adapter Toolkit linked to from https://developer.apple.com/apple-intelligence/foundation-models-adapter/. Failed on all attempts, with a "403 Forbidden" error. I had accepted the agreement on the first attempt. How would we get access please?
Explore the power of machine learning and Apple Intelligence within apps. Discuss integrating features, share best practices, and explore the possibilities for your app here.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hello Apple Developer Community,
I'm exploring the integration of Apple Intelligence features into my mobile application and have a couple of questions regarding the current and upcoming API capabilities:
Custom Prompt Support: Is there a way to pass custom prompts to Apple Intelligence to generate specific inferences? For instance, can we provide a unique prompt to the Writing Tools or Image Playground APIs to obtain tailored outputs?
Direct Inference Capabilities: Beyond the predefined functionalities like text rewriting or image generation, does Apple Intelligence offer APIs that allow for more generalized inference tasks based on custom inputs?
I understand that Apple has provided APIs such as Writing Tools, Image Playground, and Genmoji. However, I'm interested in understanding the extent of customization and flexibility these APIs offer, especially concerning custom prompts and generalized inference.
Additionally, are there any plans or timelines for expanding these capabilities, perhaps with the introduction of new SDKs or frameworks that allow deeper integration and customization?
Any insights, documentation links, or experiences shared would be greatly appreciated.
Thank you in advance for your assistance!
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
I've downloaded the Xcode-beta and run the sample project "FoundationModelsTripPlanner" but I got this error when trying generate the response.
InferenceError::inferenceFailed::Error Domain=com.apple.UnifiedAssetFramework Code=5000 "There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.modelcatalog" UserInfo={NSLocalizedFailureReason=There are no underlying assets (neither atomic instance nor asset roots) for consistency token for asset set com.apple.modelcatalog}
Device: M1 Pro
Question:
Is it because M1 not supporting this feature?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
Hi Apple team,
When using AppShortcutsProvider, I hit the hard limit:
Each app may have at most 10 App Shortcuts.
This feels limiting for apps that offer multiple workflows and would benefit from deeper Siri integration.
Could this cap be raised — ideally to 30 — to support broader use of AppIntents, enhance Siri automation, and unlock more system-level capabilities?
AppShortcuts are a fantastic tool. Increasing the limit would make them even more powerful.
Thanks!
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Tags:
Shortcuts
App Intents
Apple Intelligence
I downloaded the new developer beta and then installed xcode. I did the downloads but I couldn't download the Predictive Code Completion Model. When I try to download it I get the error "The operation couldn’t be completed. (ModelCatalog.CatalogErrors.AssetErrors error 1.)". I am using the M3 Pro model.
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Introduced in the Keynote was the 3D Lock Screen images with the kangaroo:
https://9to5mac.com/wp-content/uploads/sites/6/2025/06/3d-lock-screen-2.gif
I can't see any mention on if this effect is available for developers with an API to convert flat 2D photos in to the same 3D feeling image.
Does anyone know if there is an API?
Topic:
Machine Learning & AI
SubTopic:
General
Trying the Foundation Model framework and when I try to run several sessions in a loop, I'm getting a thrown error that I'm hitting a rate limit.
Are these rate limits documented? What's the best practice here?
I'm trying to run the models against new content downloaded from a web service where I might get ~200 items in a given download. They're relatively small but there can be that many that want to be processed in a loop.
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I generate an array of random floats using the code shown below. However, I would like to do this with Double instead of Float. Are there any BNNS random number generators for double values, something like BNNSRandomFillUniformDouble? If not, is there a way I can convert BNNSNDArrayDescriptor from float to double?
import Accelerate
let n = 100_000_000
let result = Array<Float>(unsafeUninitializedCapacity: n) { buffer, initCount in
var descriptor = BNNSNDArrayDescriptor(data: buffer, shape: .vector(n))!
let randomGenerator = BNNSCreateRandomGenerator(BNNSRandomGeneratorMethodAES_CTR, nil)
BNNSRandomFillUniformFloat(randomGenerator, &descriptor, 0, 1)
initCount = n
}
I downloaded Xcode Beta 1 on my mac (did not upgrade the OS). The target OS level of iOS26 and the device simulator for iOS26 is downloaded and selected as the target.
When I try a simple Playground in Xcode ( #Playground ) I get a session error.
#Playground {
let avail = SystemLanguageModel.default.availability
if avail != .available {
print("SystemLanguageModel not available")
return
}
let session = LanguageModelSession()
do {
let response = try await session.respond(to: "Create a recipe for apple pie")
} catch {
print(error)
}
}
The error I get is:
Asset com.apple.gm.safety_deny_input.foundation_models.framework.api not found in Model Catalog
Is there a way to test drive the FoundationModel code without upgrading to macos26?
Hey guys 👋
I’ve been thinking about a feature idea for iOS that could totally change the way we interact with apps like Twitter/X.
Imagine if we could define our own recommendation algorithm, and have an AI on the iPhone that replaces the suggested tweets in the feed with ones that match our personal interests — based on public tweets, and without hacking anything.
Kinda like a personalized "AI skin" over the app that curates content you actually care about. Feels like this would make content way more relevant and less algorithmically manipulative.
Would love to know what you all think — and if Apple could pull this off 🔥
Topic:
Machine Learning & AI
SubTopic:
General
Hi, I'm looking for the best way to use MLX models, particularly those I've fine-tuned, within a React Native application on iOS devices. Is there a recommended integration path or specific API for bridging MLX's capabilities to React Native for deployment on iPhones and iPads?
Hello,
We find that models sometimes load very fast (<< 1 second) and sometimes encounter very long load times (>> 120 seconds). During such slow load times, the model is being compiled.
We would greatly appreciate the ability to check cache validity via CoreML and determine that we are about to encounter long load times so that we can mitigate and provide a good user experience.
A secondary issue: sometimes the cache is corrupted (typically .mpsgraphpackage yielding Metal cold asserts). This yields load failures and OS errors that persist between launches, and we have to manually nuke the cache (~/Library/..../my-app/...) for the CoreML assets. A CoreML API for clearing caches and hardening from asserts across the load paths would be appreciated
Topic:
Machine Learning & AI
SubTopic:
Core ML
Posting a follow up question after the WWDC 2025 Machine Learning AI & Frameworks Group Lab on June 12.
In regards to the on-device API of any of the AI frameworks (foundation model, vision framework, ect.), is there a response condition or path where the API outsources it's input to ChatGPT if the user has allowed this like Siri does?
Ignore this if it's a no: is this handled behind the scenes or by the developer?
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Tags:
Machine Learning
VisionKit
Apple Intelligence
iOS26 is supported by a wider range of devices than are able to run AI, e.g iPhone 12 runs iOS26, but does not support AI.
How do we determine in code if AI is supported on a device ?
How do we determine what features use AI under the hood ?
Thanks,
Steve.
Topic:
Machine Learning & AI
SubTopic:
Apple Intelligence
Is it possible to train an Adaptor for the Foundation Models to produce Generable output? If so what would the response part of the training data need to look like? Presumably, under the hood, the model is outputting JSON (or some other similar structure) that can be decoded to a Generable type. Would the response part of the training data for an Adaptor need to be in that structured format?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I am experimenting with Foundation Models in my time tracking app to analyze users tracked events, but I am finding that the model struggles with even basic computation of time. Specifically converting from seconds to hours and minutes.
To give just one example, when I prompt:
"Convert 3672 seconds to hours, minutes, and seconds. Don't include the calculations in the resulting output"
I get this:
"3672 seconds is equal to 1 hour, 0 minutes, and 36 seconds".
Which is clearly wrong - it should be 1 hour, 1 minute, and 12 seconds. Another issue that I saw a lot is that seconds were considered to be minutes, or that the hours were just completely off.
What can I do to make the support for math better? Or is that just something that the model is not meant to be used for?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
How reliable is the Models, to use as a comparison, such as a cholesterol test, to inform, for example, whether it is worth it to go see a doctor?
I would like to use Tool to attach the simple blood test data to the session and with this the Model can analyse and made a simple suggestion if is necessary to see a doctor etc.. ?
ps.: Local model
Hello Apple Team,
Thank you for the recent Group Lab and for your continued work on advancing Xcode and developer tools.
I’d like to submit a feature request:
Are there any plans to introduce support for Agentic AI Mode (MCP protocol) in future versions of iOS or Xcode?
As developer tools evolve toward more intelligent and context-aware environments, the integration of agentic AI capabilities could significantly enhance productivity and unlock new creative workflows.
Looking forward to your consideration, and thank you again for the excellent session.
Best regards
Documentation on adapter train is lacking any details related to training on dataset with tool calling. And page about tool calling itself only explain how to use it from Swift without any internal details useful in training.
Question is how schema should looks like for including tool calling in dataset?
Topic:
Machine Learning & AI
SubTopic:
Foundation Models
I'm developing a macOS application using the FoundationModels framework
(LanguageModelSession) and encountering issues with the content sanitizer
blocking legitimate text input.
** Issue Description:**
The content sanitizer is flagging text strings that contain certain
substrings, even when they represent legitimate technical content. For
example:
F_SEEL_SEX1S.wav (sE Electronics SEX1S microphone model)
Technical product identifiers
Serial numbers and version codes
** Broader Concern:**
The content sanitizer appears to be applying restrictions that seem
inappropriate for user-owned content. Even if a filename were something
like "human sex.wav", users should have the right to process their own
legitimate files on their own devices without content filtering
interference.
** Error Messages:**
SensitiveContentSettings: Sanitizer model found unsafe content in value
FoundationModels.LanguageModelSession.GenerationError error 2
** Questions:**
Is there a way to disable content sanitization for processing
user-owned content?
2. What's the recommended approach for applications that need to handle
arbitrary user text?
3. Are there APIs to process personal content without filtering
restrictions?
** Environment:**
macOS 26.0
FoundationModels framework
LanguageModelSession
Any guidance would be appreciated.