In WWDC25 Metal 4 released quite excited new features for machine learning optimization, but as we all know the pytorch based on metal shader performance (mps) is the one of most important tools for Mac machine learning area.but on mps introduced website we cannot see any support information for metal4.
General
RSS for tagExplore the power of machine learning within apps. Discuss integrating machine learning features, share best practices, and explore the possibilities for your app.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Hey Devs,
I'm trying to create my own Real Time Text detection like this Apple project. https://developer.apple.com/documentation/vision/extracting-phone-numbers-from-text-in-images
I want to use the new iOS18 RecognizeTextRequest instead of the old VNRecognizeTextRequest in my SwiftUI project.
This is my delegate code with the camera setup. I removed region of interest for debugging but I'm trying to scan English words in books. The idea is to get one word in the ROI in the future. But I can't even get proper words so testing without ROI incase my math is wrong.
@Observable
class CameraManager: NSObject, AVCapturePhotoCaptureDelegate
...
override init() {
super.init()
setUpVisionRequest()
}
private func setUpVisionRequest() {
textRequest = RecognizeTextRequest(.revision3)
}
...
func setup() -> Bool {
captureSession.beginConfiguration()
guard
let captureDevice = AVCaptureDevice.default(
.builtInWideAngleCamera, for: .video, position: .back)
else {
return false
}
self.captureDevice = captureDevice
guard let deviceInput = try? AVCaptureDeviceInput(device: captureDevice)
else {
return false
}
/// Check whether the session can add input.
guard captureSession.canAddInput(deviceInput) else {
print("Unable to add device input to the capture session.")
return false
}
/// Add the input and output to session
captureSession.addInput(deviceInput)
/// Configure the video data output
videoDataOutput.setSampleBufferDelegate(
self, queue: videoDataOutputQueue)
if captureSession.canAddOutput(videoDataOutput) {
captureSession.addOutput(videoDataOutput)
videoDataOutput.connection(with: .video)?
.preferredVideoStabilizationMode = .off
} else {
return false
}
// Set zoom and autofocus to help focus on very small text
do {
try captureDevice.lockForConfiguration()
captureDevice.videoZoomFactor = 2
captureDevice.autoFocusRangeRestriction = .near
captureDevice.unlockForConfiguration()
} catch {
print("Could not set zoom level due to error: \(error)")
return false
}
captureSession.commitConfiguration()
// potential issue with background vs dispatchqueue ??
Task(priority: .background) {
captureSession.startRunning()
}
return true
}
}
// Issue here ???
extension CameraManager: AVCaptureVideoDataOutputSampleBufferDelegate {
func captureOutput(
_ output: AVCaptureOutput, didOutput sampleBuffer: CMSampleBuffer,
from connection: AVCaptureConnection
) {
guard let pixelBuffer = CMSampleBufferGetImageBuffer(sampleBuffer) else { return }
Task {
textRequest.recognitionLevel = .fast
textRequest.recognitionLanguages = [Locale.Language(identifier: "en-US")]
do {
let observations = try await textRequest.perform(on: pixelBuffer)
for observation in observations {
let recognizedText = observation.topCandidates(1).first
print("recognized text \(recognizedText)")
}
} catch {
print("Recognition error: \(error.localizedDescription)")
}
}
}
}
The results I get look like this ( full page of English from a any book)
recognized text Optional(RecognizedText(string: e bnUI W4, confidence: 0.5))
recognized text Optional(RecognizedText(string: ?'U, confidence: 0.3))
recognized text Optional(RecognizedText(string: traQt4, confidence: 0.3))
recognized text Optional(RecognizedText(string: li, confidence: 0.3))
recognized text Optional(RecognizedText(string: 15,1,#, confidence: 0.3))
recognized text Optional(RecognizedText(string: jllÈ, confidence: 0.3))
recognized text Optional(RecognizedText(string: vtrll, confidence: 0.3))
recognized text Optional(RecognizedText(string: 5,1,: 11, confidence: 0.5))
recognized text Optional(RecognizedText(string: 1141, confidence: 0.3))
recognized text Optional(RecognizedText(string: jllll ljiiilij41, confidence: 0.3))
recognized text Optional(RecognizedText(string: 2f4, confidence: 0.3))
recognized text Optional(RecognizedText(string: ktril, confidence: 0.3))
recognized text Optional(RecognizedText(string: ¥LLI, confidence: 0.3))
recognized text Optional(RecognizedText(string: 11[Itl,, confidence: 0.3))
recognized text Optional(RecognizedText(string: 'rtlÈ131, confidence: 0.3))
Even with ROI set to a specific rectangle Normalized to Vision, I get the same results with single characters returning gibberish.
Any help would be amazing thank you.
Am I using the buffer right ?
Am I using the new perform(on: CVPixelBuffer) right ?
Maybe I didn't set up my camera properly? I can provide code
Environment
MacOC 26
Xcode Version 26.0 beta 7 (17A5305k)
simulator: iPhone 16 pro
iOS: iOS 26
Problem
NLContextualEmbedding.load() fails with the following error
In simulator
Failed to load embedding from MIL representation: filesystem error: in create_directories: Permission denied ["/var/db/com.apple.naturallanguaged/com.apple.e5rt.e5bundlecache"]
filesystem error: in create_directories: Permission denied ["/var/db/com.apple.naturallanguaged/com.apple.e5rt.e5bundlecache"]
Failed to load embedding model 'mul_Latn' - '5C45D94E-BAB4-4927-94B6-8B5745C46289'
assetRequestFailed(Optional(Error Domain=NLNaturalLanguageErrorDomain Code=7 "Embedding model requires compilation" UserInfo={NSLocalizedDescription=Embedding model requires compilation}))
in #Playground
I'm new to this embedding model. Not sure if it's caused by my code or environment.
Code snippet
import Foundation
import NaturalLanguage
import Playgrounds
#Playground {
// Prefer initializing by script for broader coverage; returns NLContextualEmbedding?
guard let embeddingModel = NLContextualEmbedding(script: .latin) else {
print("Failed to create NLContextualEmbedding")
return
}
print(embeddingModel.hasAvailableAssets)
do {
try embeddingModel.load()
print("Model loaded")
} catch {
print("Failed to load model: \(error)")
}
}
Hi, recently i tried to fine-tune Gemma-2-2b mlx model on my macbook (24 GB UMA). The code started running, after few seconds i saw swap size reaching 50GB and ram around 23 GB and then it stopped. I ran the Gemma-2-2b (cuda) on colab, it ran and occupied 27 GB on A100 gpu and worked fine. Here i didn't experienced swap issue.
Now my question is if my UMA was more than 27 GB, i also would not have experienced swap disk issue.
Thanks.
Topic:
Machine Learning & AI
SubTopic:
General
I have used mlx_lm.lora to fine tune a mistral-7b-v0.3-4bit model with my data. I fused the mistral model with my adapters and upload the fused model to my directory on huggingface. I was able to use mlx_lm.generate to use the fused model in Terminal. However, I don't know how to load the model in Swift. I've used
Imports
import SwiftUI
import MLX
import MLXLMCommon
import MLXLLM
let modelFactory = LLMModelFactory.shared
let configuration = ModelConfiguration(
id: "pharmpk/pk-mistral-7b-v0.3-4bit"
)
// Load the model off the main actor, then assign on the main actor
let loaded = try await modelFactory.loadContainer(configuration: configuration)
{ progress in
print("Downloading progress: \(progress.fractionCompleted * 100)%")
}
await MainActor.run {
self.model = loaded
}
I'm getting an error
runModel error: downloadError("A server with the specified hostname could not be found.")
Any suggestions?
Thanks, David
PS, I can load the model from the app bundle
// directory: Bundle.main.resourceURL!
but it's too big to upload for Testflight
Topic:
Machine Learning & AI
SubTopic:
General
Hi
We're on tensorflow 2.20 that has support now for python 3.13 (finally!). tensorflow-metal is still only supporting 2.18 which is over a year old.
When can we expect to see support in tensorflow-metal for tf 2.20 (or later!) ?
I bought a mac thinking I would be able to get great performance from the M processors but here I am using my CPU for my ML projects.
If it's taking so long to release it, why not open source it so the community can keep it more up to date?
cheers
Matt
Hi team,
I’m exploring the Model Context Protocol (MCP), which is used to connect LLMs/AI agents to external tools in a structured way. It's becoming a common standard for automation and agent workflows.
Before I go deeper, I want to confirm:
Does Apple currently provide any official MCP server, API surface, or SDK on iOS/macOS?
From what I see, only third-party MCP servers exist for iOS simulators/devices, and Apple’s own frameworks (Foundation Models, Apple Intelligence) don’t expose MCP endpoints.
Is there any chance Apple might introduce MCP support—or publish recommended patterns for safely integrating MCP inside apps or developer tools?
I would like to see if I can share my app's data to the MCP server to enable other third-party apps/services to integrate easily
Topic:
Machine Learning & AI
SubTopic:
General
Hi everyone😊, I want to implement facial recognition into my app. I was planning to use createML's image classification, but there seams to be a lot of hassle to implement (the JSON file etc.). Are there some other easy to implement options that don't involve advanced coding. Thanks, Oliver
Topic:
Machine Learning & AI
SubTopic:
General
We are using VNRecognizeTextRequest to detect text in documents, and we have noticed that even in some very clear and well-formatted documents, there are still instances where text blocks are missed. the live text also have the same issue.
We are building an app which can reads texts. It can read english and Japanese normal texts successfully. But in some cases, we need to read Japanese tategaki (vertically aligned texts). But in that times, the same code gives no output. So, is there any need to change any configuration to read Japanese tategaki? Or is it really possible to read Japanese tategaki using vision framework?
lazy var detectTextRequest = VNRecognizeTextRequest { request, error in
self.resStr="\n"
self.words = [:]
// Get OCR result
guard let res = request.results as? [VNRecognizedTextObservation] else { return }
// separate the words by space
let text = res.compactMap({$0.topCandidates(1).first?.string}).joined(separator: " ")
var n = 0
self.wordArr=[[]]
self.xs = 1
self.ys = 1
var hs = 0.0 // To compare the heights of the words
// To get the original axis (top most word's axis), only once
for r in res {
var word = r.topCandidates(1).first?.string
self.words[word ?? ""] = [r.topLeft.x, r.topLeft.y]
if(self.cartLabelType == 1){
if(word?.components(separatedBy: CharacterSet(charactersIn: "//")).count ?? 0>2){
self.xs = r.topLeft.x
self.ys = r.topLeft.y
}
}
}
}
}
Is there any way to stop GPU work running that is scheduled using metal?
Long shader calculations don't stop when application is stopped in Xcode and continue to take up GPU time and affect the display.
Why is this functionality not available when Swift Tasks are able to be canceled?
Topic:
Machine Learning & AI
SubTopic:
General
Hi,
One can configure the languages of a (VN)RecognizeTextRequest with either:
.automatic: language to be detected
a specific language, say Spanish
If the request is configured with .automatic and successfully detects Spanish, will the results be exactly equivalent compared to a request made with Spanish set as language?
I could not find any information about this, and this is very important for the core architecture of my app.
Thanks!
Hi everyone! 👋
I'm working on a C++ project using TensorFlow Lite and was wondering if anyone has a prebuilt TensorFlow Lite C++ library (libtensorflowlite) for macOS (Apple Silicon M1/M2) that they’d be willing to share.
I’m looking specifically for the TensorFlow Lite C++ API — something that lets me use tflite::Interpreter, tflite::FlatBufferModel, etc. Building it from source using Bazel on macOS has been quite challenging and time-consuming, so a ready-to-use .dylib or .a build along with the required headers would be incredibly helpful.
TensorFlow Lite version: v2.18.0 preferred
Target: macOS arm64 (Apple Silicon)
What I need:
libtensorflowlite.dylib or .a
Corresponding headers (ideally organized in a clean include/ folder)
If you have one available or know where I can find a reliable prebuilt version, I’d be super grateful. Thanks in advance! 🙏
The WWDC25: Explore large language models on Apple silicon with MLX video talks about using your own data to fine-tune a large language model. But the video doesn't explain what kind of data can be used. The video just shows the command to use and how to point to the data folder. Can I use PDFs, Word documents, Markdown files to train the model? Are there any code examples on GitHub that demonstrate how to do this?
WWDC25: Combine Metal 4 machine learning and graphics
Demonstrated a way to combine neural network in the graphics pipeline directly through the shaders, using an example of Texture Compression. However there is no mention of using which ML technique texture is compressed.
Can anyone point me to some well known model/s for this particular use case shown in WWDC25.
I have a question. In China, long pressing a picture in the album can segment the target. Is this model a local model? Is there any information? Can developers use it?
i'm trying to create an NLModel within a MessageFilterExtension handler.
The code works fine in the main app, but when I try to use it in the extension it fails to initialize. Just this doesn't even work and gets the error below.
Single line that fails.
SMS_Classifier is the class xcode generated for my model. This line works fine in the main app.
let mlModel = try SMS_Classifier(configuration: MLModelConfiguration()).model
Error
Unable to locate Asset for contextual word embedding model for local en.
MLModelAsset: load failed with error Error Domain=com.apple.CoreML Code=0 "initialization of text classifier model with model data failed" UserInfo={NSLocalizedDescription=initialization of text classifier model with model data failed}
Any ideas?
I'm playing with the new Vision API for iOS18, specifically with the new CalculateImageAestheticsScoresRequest API.
When I try to perform the image observation request I get this error:
internalError("Error Domain=NSOSStatusErrorDomain Code=-1 \"Failed to create espresso context.\" UserInfo={NSLocalizedDescription=Failed to create espresso context.}")
The code is pretty straightforward:
if let image = image {
let request = CalculateImageAestheticsScoresRequest()
Task {
do {
let cgImg = image.cgImage!
let observations = try await request.perform(on: cgImg)
let description = observations.description
let score = observations.overallScore
print(description)
print(score)
} catch {
print(error)
}
}
}
I'm running it on a M2 using the simulator.
Is it a bug? What's wrong?
Issue type: Bug
TensorFlow metal version: 1.1.1
TensorFlow version: 2.18
OS platform and distribution: MacOS 15.2
Python version: 3.11.11
GPU model and memory: Apple M2 Max GPU 38-cores
Standalone code to reproduce the issue:
import tensorflow as tf
if __name__ == '__main__':
gpus = tf.config.experimental.list_physical_devices('GPU')
print(gpus)
Current behavior
Apple silicone GPU with tensorflow-metal==1.1.0 and python 3.11 works fine with tensorboard==2.17.0
This is normal output:
/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]
Process finished with exit code 0
But if I upgrade tensorflow to 2.18 I'll have error:
/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/bin/python /Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py
Traceback (most recent call last):
File "/Users/mspanchenko/VSCode/cryptoNN/ml/core_second_window/test_tensorflow_gpus.py", line 1, in <module>
import tensorflow as tf
File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/__init__.py", line 437, in <module>
_ll.load_library(_plugin_dir)
File "/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/framework/load_library.py", line 151, in load_library
py_tf.TF_LoadLibrary(lib)
tensorflow.python.framework.errors_impl.NotFoundError: dlopen(/Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib, 0x0006): Symbol not found: __ZN3tsl8internal10LogMessageC1EPKcii
Referenced from: <D2EF42E3-3A7F-39DD-9982-FB6BCDC2853C> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow-plugins/libmetal_plugin.dylib
Expected in: <2814A58E-D752-317B-8040-131217E2F9AA> /Users/mspanchenko/anaconda3/envs/cryptoNN_ml_core/lib/python3.11/site-packages/tensorflow/python/_pywrap_tensorflow_internal.so
Process finished with exit code 1
Hi everyone,
I'm a Mac enthusiast experimenting with tensorflow-metal on my Mac Pro (2013). My question is about GPU selection in tensorflow-metal (v0.8.0), which still supports Intel-based Macs, including my machine.
I've noticed that when running TensorFlow with Metal, it automatically selects a GPU, regardless of what I specify using device indices like "gpu:0", "gpu:1", or "gpu:2". I'm wondering if there's a way to manually specify which GPU should be used via an environment variable or another method.
For reference, I’ve tried the example from TensorFlow’s guide on multi-GPU selection: https://www.tensorflow.org/guide/gpu#using_a_single_gpu_on_a_multi-gpu_system
My goal is to explore performance optimizations by using MirroredStrategy in TensorFlow to leverage multiple GPUs: https://www.tensorflow.org/guide/distributed_training#mirroredstrategy
Interestingly, I discovered that the metalcompute Python library (https://pypi.org/project/metalcompute/) allows to utilize manually selected GPUs on my system, allowing for proper multi-GPU computations. This makes me wonder:
Is there a hidden environment variable or setting that allows manual GPU selection in tensorflow-metal?
Has anyone successfully used MirroredStrategy on multiple GPUs with tensorflow-metal?
Would a bridge between metalcompute and tensorflow-metal be necessary for this use case, or is there a more direct approach?
I’d love to hear if anyone else has experimented with this or has insights on getting finer control over GPU selection. Any thoughts or suggestions would be greatly appreciated!
Thanks!