Hello 👋
Our team added com.apple.security.temporary-exception.apple-events: com.apple.Terminal recently to our Mac app to be able to tell the terminal to execute a specific command line automatically for the user when clicking a button but we've been rejected during review because of this entitlement so for now we've deleted it and deleted the associated feature.
It concerns the following feature (see attachment).
Context:
Among other things the application enable to review pull request changes (remote) and we would like a button to automatically clone the pull request on disk when user click a button. We would like to use terminal for security reason as when cloning using git command we need ssh keys or other credential and there's no reason (rather than technical ones) that the user provide us such private information that is stored in the ~/.ssh. We prefer think the other way around and tell the user what to execute instead (no credentials involved or shared).
We referred to: https://developer.apple.com/library/archive/documentation/Miscellaneous/Reference/EntitlementKeyReference/Chapters/AppSandboxTemporaryExceptionEntitlements.html
I admit it's unclear for me if this will imply a 100% rejection or if these entitlements are deprecated.
Is "com.apple.security.temporary-exception.apple-events: com.apple.Terminal" an entitlement that is reserved for special Apple partners ?
Is it an entitlement that we should demonstrate usage first ? Or should we completely remove the feature if we distribute through the App Store ?
Is Apple advice for other APIs to develop such features (execute command line for the user) when distributing through the App Store ?
As said we've disabled the feature for now.
Thank you in advance for those who will take time to answer this,
Processes & Concurrency
RSS for tagDiscover how the operating system manages multiple applications and processes simultaneously, ensuring smooth multitasking performance.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I have BGProcessingTask & BGAppRefreshTask working fine. The main purpose of my use of BGProcessingTask is to upload a file to AWS S3 using multipart/form-data. I have found that any file above about 2.5MB times out after running almost four minutes. If I run the same RESTful api using curl or Postman, I can upload a 25MB file in 3 seconds or less.
I have tried to deliberately set .earliestBeginDate to 01:00 or 02:00 local time on the iPhone, but that does not seem to help.
I use the delegate (yes, I am writing in Objective C) - URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend: and find that the iOS system uploads about 140kB every 15 seconds or so.
I am looking for recommendations or insight into how I might enable uploads of 25MB files. I would be happy it I could do just one a day for my use case.
I provide code on how I set up the NSURLSession and NSURLSessionDownloadTask, as it is my guess that if there is something that needs to be modified it is there.
I have to believe there is a solution for this since I read in many posts here and in StackOverflow how developers are using this functionality for uploading many, many files.
NSURLSessionConfiguration *sConf = [NSURLSessionConfiguration backgroundSessionConfigurationWithIdentifier:bkto.taskIdentifier];
sConf.URLCache = [NSURLCache sharedURLCache];
sConf.waitsForConnectivity = YES;
sConf.allowsCellularAccess = NO;
sConf.networkServiceType = NSURLNetworkServiceTypeVideot;
sConf.multipathServiceType = NSURLSessionMultipathServiceTypeNone;
sConf.discretionary = YES;
sConf.timeoutIntervalForResource = kONEHOURINTERVAL;
sConf.timeoutIntervalForRequest = kONEMINUTEINTERVAL;
sConf.allowsExpensiveNetworkAccess = NO ;
sConf.allowsConstrainedNetworkAccess = NO;
sConf.sessionSendsLaunchEvents = YES;
myURLSession = [NSURLSession sessionWithConfiguration:sConf delegate:self delegateQueue:nil];
And then later in the code...
NSMutableURLRequest *request = [NSMutableURLRequest requestWithURL:[NSURL URLWithString:pth]];
request.HTTPMethod = kHTTPPOST;
request.HTTPBody = [NSData my body data];
request.timeoutInterval = 60;
[request setValue:@"*/*" forHTTPHeaderField:@"Accept"];
[request setValue:@"en-us,en" forHTTPHeaderField:@"Accept-Language"];
[request setValue:@"gzip, deflate, br" forHTTPHeaderField:@"Accept-Encoding"];
[request setValue:@"ISO-8859-1,utf-8" forHTTPHeaderField:@"Accept-Charset"];
[request setValue:@"600" forHTTPHeaderField:@"Keep-Alive"];
[request setValue:@"keep-alive" forHTTPHeaderField:@"Connection"];
NSString *contType = [NSString stringWithFormat:@"multipart/form-data; boundary=%@",bnd];
[request setValue:contType forHTTPHeaderField:@"Content-Type"];
[request addValue:[NSString stringWithFormat:@"%lu",(unsigned long)myData.length] forHTTPHeaderField:@"Content-Length"];
and here are a few lines from my logs to show the infrequent multi-part uploads of only small chunks of data by the iOS system:
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: bytesSent = 393,216
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: totalBytesSent = 393,216
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: task = BackgroundDownloadTask <76A81A80-4703-4686-8742-A0048EB65108>.<2>, time Fri Mar 7 16:25:27 2025
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: bytesSent = 131,072
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: totalBytesSent = 524,288
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: task = BackgroundDownloadTask <76A81A80-4703-4686-8742-A0048EB65108>.<2>, time Fri Mar 7 16:25:42 2025
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: bytesSent = 131,072
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: totalBytesSent = 655,360
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: task = BackgroundDownloadTask <76A81A80-4703-4686-8742-A0048EB65108>.<2>, time Fri Mar 7 16:25:56 2025
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: bytesSent = 131,072
-[BKSessionManager URLSession:task:didSendBodyData:totalBytesSent:totalBytesExpectedToSend:]: totalBytesSent = 786,432
We would be creating N NWListener objects and M NWConnection objects in our process' communication subsystem to create server sockets, accepted client sockets on server and client sockets on clients.
Both NWConnection and NWListener rely on DispatchQueue to deliver state changes, incoming connections, send/recv completions etc.
What DispatchQueues should I use and why?
Global Concurrent Dispatch Queue (and which QoS?) for all NWConnection and NWListener
One custom concurrent queue (which QoS?) for all NWConnection and NWListener? (Does that anyways get targetted to one of the global queues?)
One custom concurrent queue per NWConnection and NWListener though all targetted to Global Concurrent Dispatch Queue (and which QoS?)?
One custom concurrent queue per NWConnection and NWListener though all targetted to single target custom concurrent queue?
For every option above, how am I impacted in terms of parallelism, concurrency, throughput & latency and how is overall system impacted (with other processes also running)?
Seperate questions (sorry for the digression):
Are global concurrent queues specific to a process or shared across all processes on a device?
Can I safely use setSpecific on global dispatch queues in our app?
I've tuned my task to be decently resilient, but I found a few issues that caused it to expire regularly.
excessive CPU usage -> I'm actually running it behind ReactNative, and I found an issue where I was still updating ReactNative and thus it was keeping it alive the entire time the task was running. Removing this update helped improve stability
not updating progress frequently enough ( see https://developer.apple.com/forums/thread/809182?page=1#868247022)
My feature request is, would it be possible to get a reason the task was expired in task.expirationHandler? That would be helpful for both the user and for debugging why the task was expired. Thanks!
I have followed this post for creating a Launch Agent that provides an XPC service on macOS using Swift-
post link - https://rderik.com/blog/creating-a-launch-agent-that-provides-an-xpc-service-on-macos/
In the swift code the interface of the XPC service is defined by protocols which makes the code nice and neat. I want to implement the XPC service using C APIs for XPC, and C APIs send and receive messages using dictionaries, which need manual handling with conditional statements.
I want to know if its possible to go with the protocol based approach with C APIs.
I'm developing a safety-critical monitoring app that needs to fetch data from government APIs every 30 minutes and trigger emergency audio alerts for threshold violations.
The app must work reliably in background since users depend on it for safety alerts even while sleeping.
Main Challenge: iOS background limitations seem to prevent consistent 30-minute intervals. Standard BGTaskScheduler and timers get suspended after a few minutes in background.
Question: What's the most reliable approach to ensure consistent 30-minute background monitoring for a safety-critical app where missed alerts could have serious consequences?
Are there special entitlements or frameworks for emergency/safety applications?
The app needs to function like an alarm clock - working reliably even when backgrounded with emergency audio override capabilities.
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Network
AVAudioSession
Background Tasks
I'm developing a macOS application that tracks the duration of a user's session using a timer, which is displayed both in the main window and in an menu bar extra view. I have a couple of questions regarding the timer's behavior:
What happens to the timer if the user closes the application's window (causing the app to become inactive) but does not fully quit it? Does the timer continue to run, pause, or behave in some other way?
Will the app nap feature stop the timer when app is in-active state?
When the application is inactive and the system is either in sleep mode or locked, does the timer’s tolerance get affected? In other words, will the timer fire with any additional delay compared to its scheduled time under these conditions?
I am building an app that uses the SMAppService to register a LaunchDaemon that is bundled with my .app. I've got a priming flow created which walks the user through approving the service so that it will start on login.
However, I need to also be able to upgrade this background service if the user updates the app. To do this, I think I need to call unregisterAndReturnError and then registerAndReturnError.
From my testing, this seems to work correctly, but I have a concern. Will the user ever be prompted to re-authorize the LaunchDaemon that I am registering? If so, under what circumstances will that happen, and what does it look like (so that I can guide the user through it)?
I have been working on updating an old app that makes extensive use of Objective-C's NSTask. Now using Process in Swift, I'm trying to gather updates as the process runs, using readabilityHandler and availableData. However, my process tends to exit before all data has been read. I found this post entitled "Running a Child Process with Standard Input and Output" but it doesn't seem to address gathering output from long-running tasks. Is there a straightforward way to gather ongoing output from a long running task without it prematurely exiting?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Foundation
Inter-process communication
Hi,
I have a sandboxed app with a bundled sandboxed XPC service. When it’s launched, the XPC service registers a repeating XPC activity with the system. The activity’s handler block does get called regularly like I’d expect, but it stops being called once the main app terminates.
What’s the recommended way to fix this issue? Could I have a bundled XPC service double as a launch agent, or would that cause other problems?
I'm a developer using Lazarus Pascal, so converting ObjC and Swift comes with its challenges.
I'm trying to figure how to properly use SMAppService to add my application as a login item for the App Store.
I have learned that the old method (< macOS 13) uses a helper tool, included in the app bundle, which calls the now deprecated SMLoginItemSetEnabled. Now this is already quite a pain to deal with if you're not using XCode, not to mention converting the headers being rather complicated when you're not experienced with doing this.
The "new" method (as of macOS 13) is using SMAppService.
Can anyone explain how to use this? The documentation (for me anyway) is a not very clear about that and neither are examples that can be found all over the Internet.
My main question is:
Can I now use the SMAppService functions to add/remove a login item straight in my application, or is a helper tool still required?
Hello,
I'm trying to adopt the new BGContinuedProcessingTask API, but I'm having a little trouble imagining how the API authors intended it be used. I saw the WWDC talk, but it lacked higher-level details about how to integrate this API, and I can't find a sample project.
I notice that we can list wildcard background task identifiers in our Info.plist files now, and it appears this is to be used with continued tasks - a user might start one video encoding, then while it is ongoing, enqueue another one from the same app, and these tasks would have identifiers such as "MyApp.VideoEncoding.ABCD" and "MyApp.VideoEncoding.EFGH" to distinguish them.
When it comes to implementing this, is the expectation that we:
a) Register a single handler for the wildcard pattern, which then figures out how to fulfil each request from the identifier of the passed-in task instance?
Or
b) Register a unique handler for each instance of the wildcard pattern? Since you can't unregister handlers, any resources captured by the handler would be leaked, so you'd need to make sure you only register immediately before submission - in other words register + submit should always be called as a pair.
Of course, I'd like to design my application to use this API as the authors intended it be used, but I'm just not entirely sure what that is. When I try to register a single handler for a wildcard pattern, the system rejects it at runtime (while allowing registrations for each instance of the pattern, indicating that at least my Info.plist is configured correctly). That points towards option B.
If it is option B, it's potentially worth calling that out in documentation - or even better, perhaps introduce a new call just for BGContinuedProcessingTask instead of the separate register + submit calls?
Thanks for your insight.
K
Aside: Also, it would be really nice if the handler closure would be async. Currently if you need to await on something, you need to launch an unstructured Task, but that causes issues since BGContinuedProcessingTask is not Sendable, so you can't pass it in to that Task to do things like update the title or mark the BGTask as complete.
I am developing a background application that acts as a metadata server under MacOS written in Swift. Sandboxed clients prompt the user to select URLs which are passed to the server as security scoped bookmarks via an App Group and the metadata will be passed back. I don't want the I/O overhead of passing the complete image file data to the server. All the variations I have tried of creating security scoped bookmarks in the client and reading them from the server fail with error messages such as "The file couldn’t be opened because it isn’t in the correct format." Can anyone guide me in the right direction or is this just not possible?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Tags:
Files and Storage
App Sandbox
XPC
After logging in to the main App, turn on screen recording, then switch to the interface of another App to perform operations. After about ten-odd minutes, when returning to the main App, it was found that the app was forcefully quit by the system, and subsequent operations could not be carried out.
Regarding the Background Assets capability on iOS:
In the install scenario, resources defined as the "install" type are incorporated into the App Store download progress. Do resources of the "update" type in the update scenario also get incorporated into the App Store download progress in the same way?
If an exception occurs during the download of install-type resources and the download cannot proceed further, will the system no longer actively block users from launching the app and instead enable the launch button?
Currently, if a user has enabled automatic updates on their device, after the app is updated and released on the App Store, will the Background Assets download start immediately once the automatic update completes? Or does Background Assets have its own built-in scheduling logic that prevents it from running concurrently with the automatic update?
Hi, I have a couple questions about background app refresh. First, is the function RefreshAppContentsOperation() where to implement code that needs to be run in the background? Second, despite importing BackgroundTasks, I am getting the error "cannot find operationQueue in scope". What can I do to resolve that? Thank you.
func scheduleAppRefresh() {
let request = BGAppRefreshTaskRequest(identifier: "peaceofmindmentalhealth.RoutineRefresh")
// Fetch no earlier than 15 minutes from now.
request.earliestBeginDate = Date(timeIntervalSinceNow: 15 * 60)
do {
try BGTaskScheduler.shared.submit(request)
} catch {
print("Could not schedule app refresh: \(error)")
}
}
func handleAppRefresh(task: BGAppRefreshTask) {
// Schedule a new refresh task.
scheduleAppRefresh()
// Create an operation that performs the main part of the background task.
let operation = RefreshAppContentsOperation()
// Provide the background task with an expiration handler that cancels the operation.
task.expirationHandler = {
operation.cancel()
}
// Inform the system that the background task is complete
// when the operation completes.
operation.completionBlock = {
task.setTaskCompleted(success: !operation.isCancelled)
}
// Start the operation.
operationQueue.addOperation(operation)
}
func RefreshAppContentsOperation() -> Operation {
}
Hi,
I built an Electron app that uses puppeteer-cluster to open a bundled version of Chrome. Everything works before packaging/signing with electron builder. Transporter does not report any issues and the app opens in TestFlight.
the Chrome.app is signed separately before running builder
hardenedRuntime = false
However, a permission error occurs when cluster attempts to launch Chrome:
Error: Unable to launch browser, error message: Failed to launch the browser process!
[0601/152740.225314:ERROR:bootstrap.cc(65)] bootstrap_check_in org.chromium.crashpad.child_port_handshake.9915.63117.BUEXLMXFWPLCEONM: Permission denied (1100)
[0601/152740.226091:ERROR:file_io.cc(94)] ReadExactly: expected 4, observed 0
[0601/152740.229808:ERROR:bootstrap.cc(65)] bootstrap_check_in org.chromium.crashpad.child_port_handshake.9913.63115.VVKELOQUCWUYPFMQ: Permission denied (1100)
[0601/152740.230244:ERROR:file_io.cc(94)] ReadExactly: expected 4, observed 0
[9911:45571:0601/152740.506968:ERROR:named_platform_channel_mac.cc(44)] bootstrap_check_in com.google.chrome.for.testing.apps.52995c87946bbcc94fc9a27df1478a13: Permission denied (1100)
[9911:62467:0601/152740.507564:FATAL:mach_port_rendezvous.cc(281)] Check failed: kr == KERN_SUCCESS. bootstrap_check_in com.google.chrome.for.testing.MachPortRendezvousServer.9911: Permission denied (1100)
at Cluster.<anonymous> (/Applications/MyApp.app/Contents/Resources/app.asar/node_modules/puppeteer-cluster/dist/Cluster.js:119:23)
at Generator.throw (<anonymous>)
at rejected (/Applications/MyApp.app/Contents/Resources/app.asar/node_modules/puppeteer-cluster/dist/Cluster.js:6:65)
at process.processTicksAndRejections (node:internal/process/task_queues:105:5)
I'm wondering if it's an issue with entitlements, or something more.
The entitlements.mas.plist (aside from identifiers):
com.apple.security.app-sandbox
com.apple.security.cs.allow-jit
com.apple.security.cs.allow-unsigned-executable-memory
com.apple.security.cs.allow-dyld-environment-variables
com.apple.security.network.client
com.apple.security.network.server
com.apple.security.files.user-selected.read-write
com.apple.security.cs.disable-executable-page-protection
com.apple.security.files.user-selected.executable
I've spent many hours searching for a solution. Any help or insight would be greatly appreciated.
Topic:
App & System Services
SubTopic:
Processes & Concurrency
Hi,
I have a hard time getting my head wrapped around the possibilities of running a app or a task in a app in the background.
I have a app where I utilize MusicKit to create a playlist in Apple Music, and add songs to the playlist. Now the songs added are picked from choices made by the user, and the total number of songs to add is 75, and that takes some time. And if the user switches to a different app or the phone is locked, the add songs logic stops, and then starts again as soon as the app is active again.
What I am trying to achieve is of course for this to keep processing also when the app is not active, so basically to keep it running in the background.
But this is where I struggle to understand how I can do that - The available choice seems to be BGTaskScheduler, but that just does not seem correct. From what I understand it just schedules a task, and it will be processed whenever the app or phone "feels like it" (again, my understanding, might be wrong), and that won't work in my scenario. I want the task to start when the user taps a button, and just keep running until it is finished, regardless of if the app is active or not.
Any pointers, tips, advices out there on how I can achieve this?
Topic:
App & System Services
SubTopic:
Processes & Concurrency
I abandoned Mac development back around 10.4 when I departed Apple and am playing catch-up, trying to figure out how to register a privileged helper tool that can execute commands as root in the new world order. I am developing on 13.1 and since some of these APIs debuted in 13, I'm wondering if that's ultimately the root of my problem.
Starting off with the example code provided here:
https://developer.apple.com/documentation/servicemanagement/updating-your-app-package-installer-to-use-the-new-service-management-api
Following all build/run instructions in the README to the letter, I've not been successful in getting any part of it to work as documented. When I invoke the register command the test app briefly appears in System Settings for me to enable, but once I slide the switch over, it disappears. Subsequent attempts to invoke the register command are met only with the error message:
`Unable to register Error Domain=SMAppServiceErrorDomain Code=1 "Operation not permitted" UserInfo={NSLocalizedFailureReason=Operation not permitted}
The app does not re-appear in System Settings on these subsequent invocations. When I invoke the status command the result mysteriously equates to SMAppService.Status.notFound.
The plist is in the right place with the right name and it is using the BundleProgram key exactly as supplied in the sample code project. The executable is also in the right place at Contents/Resources/SampleLaunchAgent relative to the app root.
The error messaging here is extremely disappointing and I'm not seeing any way for me to dig any further without access to the underlying Objective-C (which the Swift header docs reference almost exclusively, making it fairly clear that this was a... Swift... Port... [Pun intended]).
MacOS Version: 14.7.2
macOS SDKs:
macOS 14.5 -sdk macosx14.5
I am working on a sample program for validation Against:
Team Identifier
Developer ID
I started with validating Team Identifier, but my validation is not working and it is allowing to launch programs which are not matching the team identifier in the signature.
Below is my code:
func verifyExecutableWithLCR(executablePath: String, arguments: [String]) -> Bool {
let task = Process()
task.launchPath = executablePath
task.arguments = arguments
if #available(macOS 14.4, *) {
print("launchRequirementData is available on this system.")
do {
let req = try OnDiskCodeRequirement.allOf {
TeamIdentifier("ABCDEFGHI")
//SigningIdentifier("com.***.client.***-Client.****")
}
let encoder = PropertyListEncoder()
encoder.outputFormat = .xml
let requirementData = try encoder.encode(req)
task.launchRequirementData = requirementData
print("launchRequirementData is set.")
try task.run()
print("[SUCCESS] Executable passed the code signature verification.")
return true
} catch {
print("[ERROR] Code signature verification failed: \(error.localizedDescription)")
return false
}
} else {
print("[WARNING] launchRequirement is not available on this macOS version.")
return false
}
}
Could you please help me in identifying whay am I doing wrong here?