General:
Forums subtopic: App & System Services > Networking
TN3151 Choosing the right networking API
Networking Overview document — Despite the fact that this is in the archive, this is still really useful.
TLS for App Developers forums post
Choosing a Network Debugging Tool documentation
WWDC 2019 Session 712 Advances in Networking, Part 1 — This explains the concept of constrained networking, which is Apple’s preferred solution to questions like How do I check whether I’m on Wi-Fi?
TN3135 Low-level networking on watchOS
TN3179 Understanding local network privacy
Adapt to changing network conditions tech talk
Understanding Also-Ran Connections forums post
Extra-ordinary Networking forums post
Foundation networking:
Forums tags: Foundation, CFNetwork
URL Loading System documentation — NSURLSession, or URLSession in Swift, is the recommended API for HTTP[S] on Apple platforms.
Moving to Fewer, Larger Transfers forums post
Testing Background Session Code forums post
Network framework:
Forums tag: Network
Network framework documentation — Network framework is the recommended API for TCP, UDP, and QUIC on Apple platforms.
Building a custom peer-to-peer protocol sample code (aka TicTacToe)
Implementing netcat with Network Framework sample code (aka nwcat)
Configuring a Wi-Fi accessory to join a network sample code
Moving from Multipeer Connectivity to Network Framework forums post
NWEndpoint History and Advice forums post
Network Extension (including Wi-Fi on iOS):
See Network Extension Resources
Wi-Fi Fundamentals
TN3111 iOS Wi-Fi API overview
Wi-Fi Aware framework documentation
Wi-Fi on macOS:
Forums tag: Core WLAN
Core WLAN framework documentation
Wi-Fi Fundamentals
Secure networking:
Forums tags: Security
Apple Platform Security support document
Preventing Insecure Network Connections documentation — This is all about App Transport Security (ATS).
WWDC 2017 Session 701 Your Apps and Evolving Network Security Standards [1] — This is generally interesting, but the section starting at 17:40 is, AFAIK, the best information from Apple about how certificate revocation works on modern systems.
Available trusted root certificates for Apple operating systems support article
Requirements for trusted certificates in iOS 13 and macOS 10.15 support article
About upcoming limits on trusted certificates support article
Apple’s Certificate Transparency policy support article
What’s new for enterprise in iOS 18 support article — This discusses new key usage requirements.
Technote 2232 HTTPS Server Trust Evaluation
Technote 2326 Creating Certificates for TLS Testing
QA1948 HTTPS and Test Servers
Miscellaneous:
More network-related forums tags: 5G, QUIC, Bonjour
On FTP forums post
Using the Multicast Networking Additional Capability forums post
Investigating Network Latency Problems forums post
WirelessInsights framework documentation
iOS Network Signal Strength forums post
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] This video is no longer available from Apple, but the URL should help you locate other sources of this info.
Networking
RSS for tagExplore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
Transport Layer Security (TLS) is the most important security protocol on the Internet today. Most notably, TLS puts the S into HTTPS, adding security to the otherwise insecure HTTP protocol.
IMPORTANT TLS is the successor to the Secure Sockets Layer (SSL) protocol. SSL is no longer considered secure and it’s now rarely used in practice, although many folks still say SSL when they mean TLS.
TLS is a complex protocol. Much of that complexity is hidden from app developers but there are places where it’s important to understand specific details of the protocol in order to meet your requirements. This post explains the fundamentals of TLS, concentrating on the issues that most often confuse app developers.
Note The focus of this is TLS-PKI, where PKI stands for public key infrastructure. This is the standard TLS as deployed on the wider Internet. There’s another flavour of TLS, TLS-PSK, where PSK stands for pre-shared key. This has a variety of uses, but an Apple platforms we most commonly see it with local traffic, for example, to talk to a Wi-Fi based accessory. For more on how to use TLS, both TLS-PKI and TLS-PSK, in a local context, see TLS For Accessory Developers.
Server Certificates
For standard TLS to work the server must have a digital identity, that is, the combination of a certificate and the private key matching the public key embedded in that certificate. TLS Crypto Magic™ ensures that:
The client gets a copy of the server’s certificate.
The client knows that the server holds the private key matching the public key in that certificate.
In a typical TLS handshake the server passes the client a list of certificates, where item 0 is the server’s certificate (the leaf certificate), item N is (optionally) the certificate of the certificate authority that ultimately issued that certificate (the root certificate), and items 1 through N-1 are any intermediate certificates required to build a cryptographic chain of trust from 0 to N.
Note The cryptographic chain of trust is established by means of digital signatures. Certificate X in the chain is issued by certificate X+1. The owner of certificate X+1 uses their private key to digitally sign certificate X. The client verifies this signature using the public key embedded in certificate X+1. Eventually this chain terminates in a trusted anchor, that is, a certificate that the client trusts by default. Typically this anchor is a self-signed root certificate from a certificate authority.
Note Item N is optional for reasons I’ll explain below. Also, the list of intermediate certificates may be empty (in the case where the root certificate directly issued the leaf certificate) but that’s uncommon for servers in the real world.
Once the client gets the server’s certificate, it evaluates trust on that certificate to confirm that it’s talking to the right server. There are three levels of trust evaluation here:
Basic X.509 trust evaluation checks that there’s a cryptographic chain of trust from the leaf through the intermediates to a trusted root certificate. The client has a set of trusted root certificates built in (these are from well-known certificate authorities, or CAs), and a site admin can add more via a configuration profile.
This step also checks that none of the certificates have expired, and various other more technical criteria (like the Basic Constraints extension).
Note This explains why the server does not have to include the root certificate in the list of certificates it passes to the client; the client has to have the root certificate installed if trust evaluation is to succeed.
In addition, TLS trust evaluation (per RFC 2818) checks that the DNS name that you connected to matches the DNS name in the certificate. Specifically, the DNS name must be listed in the Subject Alternative Name extension.
Note The Subject Alternative Name extension can also contain IP addresses, although that’s a much less well-trodden path. Also, historically it was common to accept DNS names in the Common Name element of the Subject but that is no longer the case on Apple platforms.
App Transport Security (ATS) adds its own security checks.
Basic X.509 and TLS trust evaluation are done for all TLS connections. ATS is only done on TLS connections made by URLSession and things layered on top URLSession (like WKWebView). In many situations you can override trust evaluation; for details, see Technote 2232 HTTPS Server Trust Evaluation). Such overrides can either tighten or loosen security. For example:
You might tighten security by checking that the server certificate was issued by a specific CA. That way, if someone manages to convince a poorly-managed CA to issue them a certificate for your server, you can detect that and fail.
You might loosen security by adding your own CA’s root certificate as a trusted anchor.
IMPORTANT If you rely on loosened security you have to disable ATS. If you leave ATS enabled, it requires that the default server trust evaluation succeeds regardless of any customisations you do.
Mutual TLS
The previous section discusses server trust evaluation, which is required for all standard TLS connections. That process describes how the client decides whether to trust the server. Mutual TLS (mTLS) is the opposite of that, that is, it’s the process by which the server decides whether to trust the client.
Note mTLS is commonly called client certificate authentication. I avoid that term because of the ongoing industry-wide confusion between certificates and digital identities. While it’s true that, in mTLS, the server authenticates the client certificate, to set this up on the client you need a digital identity, not a certificate.
mTLS authentication is optional. The server must request a certificate from the client and the client may choose to supply one or not (although if the server requests a certificate and the client doesn’t supply one it’s likely that the server will then fail the connection).
At the TLS protocol level this works much like it does with the server certificate. For the client to provide this certificate it must apply a digital identity, known as the client identity, to the connection. TLS Crypto Magic™ assures the server that, if it gets a certificate from the client, the client holds the private key associated with that certificate.
Where things diverge is in trust evaluation. Trust evaluation of the client certificate is done on the server, and the server uses its own rules to decided whether to trust a specific client certificate. For example:
Some servers do basic X.509 trust evaluation and then check that the chain of trust leads to one specific root certificate; that is, a client is trusted if it holds a digital identity whose certificate was issued by a specific CA.
Some servers just check the certificate against a list of known trusted client certificates.
When the client sends its certificate to the server it actually sends a list of certificates, much as I’ve described above for the server’s certificates. In many cases the client only needs to send item 0, that is, its leaf certificate. That’s because:
The server already has the intermediate certificates required to build a chain of trust from that leaf to its root.
There’s no point sending the root, as I discussed above in the context of server trust evaluation.
However, there are no hard and fast rules here; the server does its client trust evaluation using its own internal logic, and it’s possible that this logic might require the client to present intermediates, or indeed present the root certificate even though it’s typically redundant. If you have problems with this, you’ll have to ask the folks running the server to explain its requirements.
Note If you need to send additional certificates to the server, pass them to the certificates parameter of the method you use to create your URLCredential (typically init(identity:certificates:persistence:)).
One thing that bears repeating is that trust evaluation of the client certificate is done on the server, not the client. The client doesn’t care whether the client certificate is trusted or not. Rather, it simply passes that certificate the server and it’s up to the server to make that decision.
When a server requests a certificate from the client, it may supply a list of acceptable certificate authorities [1]. Safari uses this to filter the list of client identities it presents to the user. If you are building an HTTPS server and find that Safari doesn’t show the expected client identity, make sure you have this configured correctly. If you’re building an iOS app and want to implement a filter like Safari’s, get this list using:
The distinguishedNames property, if you’re using URLSession
The sec_protocol_metadata_access_distinguished_names routine, if you’re using Network framework
[1] See the certificate_authorities field in Section 7.4.4 of RFC 5246, and equivalent features in other TLS versions.
Self-Signed Certificates
Self-signed certificates are an ongoing source of problems with TLS. There’s only one unequivocally correct place to use a self-signed certificate: the trusted anchor provided by a certificate authority.
One place where a self-signed certificate might make sense is in a local environment, that is, securing a connection between peers without any centralised infrastructure. However, depending on the specific circumstances there may be a better option. TLS For Accessory Developers discusses this topic in detail.
Finally, it’s common for folks to use self-signed certificates for testing. I’m not a fan of that approach. Rather, I recommend the approach described in QA1948 HTTPS and Test Servers. For advice on how to set that up using just your Mac, see TN2326 Creating Certificates for TLS Testing.
TLS Standards
RFC 6101 The Secure Sockets Layer (SSL) Protocol Version 3.0 (historic)
RFC 2246 The TLS Protocol Version 1.0
RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1
RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2
RFC 8446 The Transport Layer Security (TLS) Protocol Version 1.3
RFC 4347 Datagram Transport Layer Security
RFC 6347 Datagram Transport Layer Security Version 1.2
RFC 9147 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Revision History:
2025-11-21 Clearly defined the terms TLS-PKI and TLS-PSK.
2024-03-19 Adopted the term mutual TLS in preference to client certificate authentication throughout, because the latter feeds into the ongoing certificate versus digital identity confusion. Defined the term client identity. Added the Self-Signed Certificates section. Made other minor editorial changes.
2023-02-28 Added an explanation mTLS acceptable certificate authorities.
2022-12-02 Added links to the DTLS RFCs.
2022-08-24 Added links to the TLS RFCs. Made other minor editorial changes.
2022-06-03 Added a link to TLS For Accessory Developers.
2021-02-26 Fixed the formatting. Clarified that ATS only applies to URLSession. Minor editorial changes.
2020-04-17 Updated the discussion of Subject Alternative Name to account for changes in the 2019 OS releases. Minor editorial updates.
2018-10-29 Minor editorial updates.
2016-11-11 First posted.
Is Apple's Wi-Fi Aware certified by the Wi-Fi Alliance?
Is there any non-compliance of Apple's Wi-Fi Aware with the Wi-Fi Alliance standards?
Does Apple have a roadmap to switch AWDL to Wi-Fi Aware?
Does Apple have plans to adopt Wi-Fi Aware in Mac computers?
Hi all,
I work on a smart product that, for setup, uses a captive portal to allow users to connect and configure the device.
It emits a WiFi network and runs a captive portal - an HTTP server operates at 10.0.0.1, and a DNS server responds to all requests with 10.0.0.1 to direct "any and all" request to the server.
When iOS devices connect, they send a request to captive.apple.com/hotspot-detect.html; if it returns success, that means they're on the internet; if not, the typical behavior in the past has been to assume you're connected to a captive portal and display what's being served.
I serve any requests to /hotspot-detect.html with my captive portal page (index.html).
This has worked reliably on iOS18 for a long time (user selects my products WiFi network, iOS detects portal and opens it).
But almost everyone who's now trying with iOS26 is having the "automatic pop up" behavior fail - usually it says "Error opening page - Hotspot login cannot open the page because the network connection was lost." However, if opening safari and navigating to any URL (or 10.0.0.1) the portal loads - it's just the iOS auto-detect and open that's not working
iOS18 always succeeds; iOS26 always fails.
Anybody have any idea what changes may have been introduced in iOS26 on this front, or anything I can do to help prompt or coax iOS26 into loading the portal? It typically starts reading, but then stops mid-read.
Topic:
App & System Services
SubTopic:
Networking
Hi,
We're receiving data via centralManager.centralManager.scanForPeripherals, with no options or filtering (for now), and in the func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) callback, we get advertisementData for each bluetooth device found.
But, I know one of my BLE devices is sending an Eddystone TLM payload, which generally is received into the kCBAdvDataServiceData part of the advertisementData dictionary, but, it doesn't show up.
What is happening however (when comparing to other devices that do show that payload), is I've noticed the "isConnectable" part is false, and others have it true. Technically we're not "connecting" as such as we're simply reading passive advertisement data, but does that have any bearing on how CoreBluetooth decides to build up it's AdvertisementData response?
Example (with serviceData; and I know this has Eddystone TLM)
["kCBAdvDataLocalName": FSC-BP105N, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataServiceUUIDs": <__NSArrayM 0x300b71f80>(
FEAA,
FEF5
)
, "kCBAdvDataTimestamp": 773270526.26279, "kCBAdvDataServiceData": {
FFF0 = {length = 11, bytes = 0x36021892dc0d3015aeb164};
FEAA = {length = 14, bytes = 0x20000be680000339ffa229bbce8a};
}, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataIsConnectable": 1]
Vs
This also has Eddystone TLM configured
["kCBAdvDataLocalName": 100FA9FD-7000-1000, "kCBAdvDataIsConnectable": 0, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataTimestamp": 773270918.97273]
Any insight would be great to understand if the presence of other flags drive the exposure of ServiceData or not...
I'm developing an application using the accessory setup kit (BLE) on iOS 18+. An important aspect of the connection process is being able to find and choose the correct device.
I noticed on iOS 18.2 that I was able to both scroll through the discovered accessories as well as view the advertised name. However, after upgrading to 18.7.2, only a single device is viewable and the advertised name is no longer available. Is there a trigger for this feature that I need to enable or was this "multiple discovery" feature removed? If so, why?
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Working with a Wi-Fi Accessory
Building an app that works with a Wi-Fi accessory presents specific challenges. This post discusses those challenges and some recommendations for how to address them.
Note While my focus here is iOS, much of the info in this post applies to all Apple platforms.
IMPORTANT iOS 18 introduced AccessorySetupKit, a framework to simplify the discovery and configuration of an accessory. I’m not fully up to speed on that framework myself, but I encourage you to watch WWDC 2024 Session 10203 Meet AccessorySetupKit and read the framework documentation.
IMPORTANT iOS 26 introduced WiFiAware, a framework for setting up communication with Wi-Fi Aware accessories. Wi-Fi Aware is an industry standard to securely discover, pair, and communicate with nearby devices. This is especially useful for stand-alone accessories (defined below). For more on this framework, watch WWDC 2025 Session 228 Supercharge device connectivity with Wi-Fi Aware and read the framework documentation. For information on how to create a Wi-Fi Aware accessory that works with iPhone, go to Developer > Accessories, download Accessory Design Guidelines for Apple Devices, and review the Wi-Fi Aware chapter.
Accessory Categories
I classify Wi-Fi accessories into three different categories.
A bound accessory is ultimately intended to join the user’s Wi-Fi network. It may publish its own Wi-Fi network during the setup process, but the goal of that process is to get the accessory on to the existing network. Once that’s done, your app interacts with the accessory using ordinary networking APIs.
An example of a bound accessory is a Wi-Fi capable printer.
A stand-alone accessory publishes a Wi-Fi network at all times. An iOS device joins that network so that your app can interact with it. The accessory never provides access to the wider Internet.
An example of a stand-alone accessory is a video camera that users take with them into the field. You might want to write an app that joins the camera’s network and downloads footage from it.
A gateway accessory is one that publishes a Wi-Fi network that provides access to the wider Internet. Your app might need to interact with the accessory during the setup process, but after that it’s useful as is.
An example of this is a Wi-Fi to WWAN gateway.
Not all accessories fall neatly into these categories. Indeed, some accessories might fit into multiple categories, or transition between categories. Still, I’ve found these categories to be helpful when discussing various accessory integration challenges.
Do You Control the Firmware?
The key question here is Do you control the accessory’s firmware? If so, you have a bunch of extra options that will make your life easier. If not, you have to adapt to whatever the accessory’s current firmware does.
Simple Improvements
If you do control the firmware, I strongly encourage you to:
Support IPv6
Implement Bonjour [1]
These two things are quite easy to do — most embedded platforms support them directly, so it’s just a question of turning them on — and they will make your life significantly easier:
Link-local addresses are intrinsic to IPv6, and IPv6 is intrinsic to Apple platforms. If your accessory supports IPv6, you’ll always be able to communicate with it, regardless of how messed up the IPv4 configuration gets.
Similarly, if you support Bonjour, you’ll always be able to find your accessory on the network.
[1] Bonjour is an Apple term for three Internet standards:
RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses
RFC 6762 Multicast DNS
RFC 6763 DNS-Based Service Discovery
WAC
For a bound accessory, support Wireless Accessory Configuration (WAC). This is a relatively big ask — supporting WAC requires you to join the MFi Program — but it has some huge benefits:
You don’t need to write an app to configure your accessory. The user will be able to do it directly from Settings.
If you do write an app, you can use the EAWiFiUnconfiguredAccessoryBrowser class to simplify your configuration process.
HomeKit
For a bound accessory that works in the user’s home, consider supporting HomeKit. This yields the same onboarding benefits as WAC, and many other benefits as well. Also, you can get started with the HomeKit Open Source Accessory Development Kit (ADK).
Bluetooth LE
If your accessory supports Bluetooth LE, think about how you can use that to improve your app’s user experience. For an example of that, see SSID Scanning, below.
Claiming the Default Route, Or Not?
If your accessory publishes a Wi-Fi network, a key design decision is whether to stand up enough infrastructure for an iOS device to make it the default route.
IMPORTANT To learn more about how iOS makes the decision to switch the default route, see The iOS Wi-Fi Lifecycle and Network Interface Concepts.
This decision has significant implications. If the accessory’s network becomes the default route, most network connections from iOS will be routed to your accessory. If it doesn’t provide a path to the wider Internet, those connections will fail. That includes connections made by your own app.
Note It’s possible to get around this by forcing your network connections to run over WWAN. See Binding to an Interface in Network Interface Techniques and Running an HTTP Request over WWAN. Of course, this only works if the user has WWAN. It won’t help most iPad users, for example.
OTOH, if your accessory’s network doesn’t become the default route, you’ll see other issues. iOS will not auto-join such a network so, if the user locks their device, they’ll have to manually join the network again.
In my experience a lot of accessories choose to become the default route in situations where they shouldn’t. For example, a bound accessory is never going to be able to provide a path to the wider Internet so it probably shouldn’t become the default route. However, there are cases where it absolutely makes sense, the most obvious being that of a gateway accessory.
Acting as a Captive Network, or Not?
If your accessory becomes the default route you must then decide whether to act like a captive network or not.
IMPORTANT To learn more about how iOS determines whether a network is captive, see The iOS Wi-Fi Lifecycle.
For bound and stand-alone accessories, becoming a captive network is generally a bad idea. When the user joins your network, the captive network UI comes up and they have to successfully complete it to stay on the network. If they cancel out, iOS will leave the network. That makes it hard for the user to run your app while their iOS device is on your accessory’s network.
In contrast, it’s more reasonable for a gateway accessory to act as a captive network.
SSID Scanning
Many developers think that TN3111 iOS Wi-Fi API overview is lying when it says:
iOS does not have a general-purpose API for Wi-Fi scanning
It is not.
Many developers think that the Hotspot Helper API is a panacea that will fix all their Wi-Fi accessory integration issues, if only they could get the entitlement to use it.
It will not.
Note this comment in the official docs:
NEHotspotHelper is only useful for hotspot integration. There are both technical and business restrictions that prevent it from being used for other tasks, such as accessory integration or Wi-Fi based location.
Even if you had the entitlement you would run into these technical restrictions. The API was specifically designed to support hotspot navigation — in this context hotspots are “Wi-Fi networks where the user must interact with the network to gain access to the wider Internet” — and it does not give you access to on-demand real-time Wi-Fi scan results.
Many developers look at another developer’s app, see that it’s displaying real-time Wi-Fi scan results, and think there’s some special deal with Apple that’ll make that work.
There is not.
In reality, Wi-Fi accessory developers have come up with a variety of creative approaches for this, including:
If you have a bound accessory, you might add WAC support, which makes this whole issue go away.
In many cases, you can avoid the need for Wi-Fi scan results by adopting AccessorySetupKit.
You might build your accessory with a barcode containing the info required to join its network, and scan that from your app. This is the premise behind the Configuring a Wi-Fi Accessory to Join the User’s Network sample code.
You might configure all your accessories to have a common SSID prefix, and then take advantage of the prefix support in NEHotspotConfigurationManager. See Programmatically Joining a Network, below.
You might have your app talk to your accessory via some other means, like Bluetooth LE, and have the accessory scan for Wi-Fi networks and return the results.
Programmatically Joining a Network
Network Extension framework has an API, NEHotspotConfigurationManager, to programmatically join a network, either temporarily or as a known network that supports auto-join. For the details, see Wi-Fi Configuration.
One feature that’s particularly useful is it’s prefix support, allowing you to create a configuration that’ll join any network with a specific prefix. See the init(ssidPrefix:) initialiser for the details.
For examples of how to use this API, see:
Configuring a Wi-Fi Accessory to Join the User’s Network — It shows all the steps for one approach for getting a non-WAC bound accessory on to the user’s network.
NEHotspotConfiguration Sample — Use this to explore the API in general.
Secure Communication
Users expect all network communication to be done securely. For some ideas on how to set up a secure connection to an accessory, see TLS For Accessory Developers.
Revision History
2025-11-05 Added a link to the Accessory Design Guidelines for Apple Devices.
2025-06-19 Added a preliminary discussion of Wi-Fi Aware.
2024-09-12 Improved the discussion of AccessorySetupKit.
2024-07-16 Added a preliminary discussion of AccessorySetupKit.
2023-10-11 Added the HomeKit section. Fixed the link in Secure Communication to point to TLS For Accessory Developers.
2023-07-23 First posted.
Hello,
I have a few questions regarding URL Filter (iOS 26) and Content Filter Providers.
URL Filter
According to the WWDC26 video, URL Filter appears to be available for both consumer and enterprise deployments.
This seems consistent with the classic Network Extension Provider Deployment documentation (TN3134 – August 2025), where no specific deployment restriction is mentioned.
However, a more recent document (Apple Platform Deployment, September 2025) indicates the following for URL Filter:
“Requires supervision on iPhone, iPad and Mac” (with a green checkmark).
👉 My question:
Is URL Filter actually available for consumer use on non-supervised iPhones (deployed on Testflight and AppStore), or is supervision now required?
Content Filter Providers
From past experience, I remember that Content Filter Providers were only available on supervised devices.
Based on the current documentation, I am questioning their usability in a consumer context, i.e. on non-supervised iPhones.
In the Network Extension Provider Deployment documentation, it is stated that this is a Network Extension and that, since iOS 16, it is a “per-app on managed device” restriction.
In the more recent Apple Platform Deployment document, it states for iPhone and iPad:
“App needs to be installed on the user’s iOS and iPadOS device and deletion can be prevented if the device is supervised.”
👉 My understanding:
Supervised device:
The Content Filter Provider is installed via a host application that controls enabling/disabling the filter, and the host app can be prevented from being removed thanks to supervision.
Non-supervised device:
The Content Filter Provider is also installed via a host application that controls enabling/disabling the filter, but the app can be removed by the user, which would remove the filter.
👉 My question:
Can Content Filter Providers be used in a consumer context on non-supervised iPhones (deployed on Testflight and AppStore), accepting that the user can uninstall the host app (and therefore remove the filter)?
Thank you in advance for your feedback.
Sources:
TN3134 => TN3134: Network Extension provider deployment | Apple Developer Documentation
Apple Platform Deployment / Filter content for Apple devices => https://support.apple.com/en-gb/guide/deployment/dep1129ff8d2/1/web/1.0
Topic:
App & System Services
SubTopic:
Networking
From time to time the subject of NECP grows up, both here on DevForums and in DTS cases. I’ve posted about this before but I wanted to collect those tidbits into single coherent post.
If you have questions or comments, start a new thread in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
A Peek Behind the NECP Curtain
NECP stands for Network Extension Control Protocol. It’s a subsystem within the Apple networking stack that controls which programs have access to which network interfaces. It’s vitally important to the Network Extension subsystem, hence the name, but it’s used in many different places. Indeed, a very familiar example of its use is the Settings > Mobile Data [1] user interface on iOS.
NECP has no explicit API, although there are APIs that are offer some insight into its state. Continuing the Settings > Mobile Data example above, there is a little-known API, CTCellularData in the Core Telephony framework, that returns whether your app has access to WWAN.
Despite having no API, NECP is still relevant to developers. The Settings > Mobile Data example is one place where it affects app developers but it’s most important for Network Extension (NE) developers. A key use case for NECP is to prevent VPN loops. When starting an NE provider, the system configures the NECP policy for the NE provider’s process to prevent it from using a VPN interface. This means that you can safely open a network connection inside your VPN provider without having to worry about its traffic being accidentally routed back to you. This is why, for example, an NE packet tunnel provider can use any networking API it wants, including BSD Sockets, to run its connection without fear of creating a VPN loop [1].
One place that NECP shows up regularly is the system log. Next time you see a system log entry like this:
type: debug
time: 15:02:54.817903+0000
process: Mail
subsystem: com.apple.network
category: connection
message: nw_protocol_socket_set_necp_attributes [C723.1.1:1] setsockopt 39 SO_NECP_ATTRIBUTES
…
you’ll at least know what the necp means (-:
Finally, a lot of NECP infrastructure is in the Darwin open source. As with all things in Darwin, it’s fine to poke around and see how your favourite feature works, but do not incorporate any information you find into your product. Stuff you uncover by looking in Darwin is not considered API.
[1] Settings > Cellular Data if you speak American (-:
[2] Network Extension providers can call the createTCPConnection(to:enableTLS:tlsParameters:delegate:) method to create an NWTCPConnection [3] that doesn’t run through the tunnel. You can use that if it’s convenient but you don’t need to use it.
[3] NWTCPConnection is now deprecated, but there are non-deprecated equivalents. For the full story, see NWEndpoint History and Advice.
Revision History
2025-12-12 Replaced “macOS networking stack” with “Apple networking stack” to avoid giving the impression that this is all about macOS. Added a link to NWEndpoint History and Advice. Made other minor editorial changes.
2023-02-27 First posted.
The path from Network Extension’s in-provider networking APIs to Network framework has been long and somewhat rocky. The most common cause of confusion is NWEndpoint, where the same name can refer to two completely different types. I’ve helped a bunch of folks with this over the years, and I’ve decided to create this post to collect together all of those titbits.
If you have questions or comments, please put them in a new thread. Put it in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
NWEndpoint History and Advice
A tale that spans three APIs, two languages, and ten years.
The NWEndpoint type has a long and complex history, and if you’re not aware of that history you can bump into weird problems. The goal of this post is to explain the history and then offer advice on how to get around specific problems.
IMPORTANT This post focuses on NWEndpoint, because that’s the type that causes the most problems, but there’s a similar situation with NWPath.
The History
In iOS 9 Apple introduced the Network Extension (NE) framework, which offers a convenient way for developers to create a custom VPN transport. Network Extension types all have the NE prefix.
Note I’m gonna use iOS versions here, just to keep the text simple. If you’re targeting some other platform, use this handy conversion table:
iOS | macOS | tvOS | watchOS | visionOS
--- + ----- + ---- + ------- + --------
9 | 10.11 | 9 | 2 | -
12 | 10.14 | 12 | 5 | -
18 | 15 | 18 | 11 | 2
At that time we also introduced in-provider networking APIs. The idea was that an NE provider could uses these Objective-C APIs to communicate with its VPN server, and thereby avoiding a bunch of ugly BSD Sockets code.
The in-provider networking APIs were limited to NE providers. Specifically, the APIs to construct an in-provider connection were placed on types that were only usable within an NE provider. For example, a packet tunnel provider could create a NWTCPConnection object by calling -createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] and -createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate:, which are both methods on NEPacketTunnelProvider.
These in-provider networking APIs came with a number of ancillary types, including NWEndpoint and NWPath.
At the time we thought that we might promote these in-provider networking APIs to general-purpose networking APIs. That’s why the APIs use the NW prefix. For example, it’s NWTCPConnection, not NETCPConnection.
However, plans changed. In iOS 12 Apple shipped Network framework as our recommended general-purpose networking API. This actually includes two APIs:
A Swift API that follows Swift conventions, for example, the connection type is called NWConnection
A C API that follows C conventions, for example, the connection type is called nw_connection_t
These APIs follow similar design patterns to the in-provider networking API, and thus have similar ancillary types. Specifically, there are an NWEndpoint and nw_endpoint_t types, both of which perform a similar role to the NWEndpoint type in the in-provider networking API.
This was a source of some confusion in Swift, because the name NWEndpoint could refer to either the Network framework type or the Network Extension framework type, depending on what you’d included. Fortunately you could get around this by qualifying the type as either Network.NWEndpoint or NetworkExtension.NWEndpoint.
The arrival of Network framework meant that it no longer made sense to promote the in-provider networking APIs to general-purposes networking APIs. The in-provider networking APIs were on the path to deprecation.
However, deprecating these APIs was actually quite tricky. Network Extension framework uses these APIs in a number of interesting ways, and so deprecating them required adding replacements. In addition, we’d needed different replacements for Swift and Objective-C, because Network framework has separate APIs for Swift and C-based languages.
In iOS 18 we tackled that problem head on. To continue the NWTCPConnection example above, we replaced:
-createTCPConnectionToEndpoint:enableTLS:TLSParameters:delegate:] with nw_connection_t
-createTCPConnectionThroughTunnelToEndpoint:enableTLS:TLSParameters:delegate: with nw_connection_t combined with a new virtualInterface property on NEPacketTunnelProvider
Of course that’s the Objective-C side of things. In Swift, the replacement is NWConnection rather than nw_connection_t, and the type of the virtualInterface property is NWInterface rather than nw_interface_t.
But that’s not the full story. For the two types that use the same name in both frameworks, NWEndpoint and NWPath, we decided to use this opportunity to sort out that confusion. To see how we did that, check out the <NetworkExtension/NetworkExtension.apinotes> file in the SDK. Focusing on NWEndpoint for the moment, you’ll find two entries:
…
- Name: NWEndpoint
SwiftPrivate: true
…
SwiftVersions:
- Version: 5.0
…
- Name: NWEndpoint
SwiftPrivate: false
…
The first entry applies when you’re building with the Swift 6 language mode. This marks the type as SwiftPrivate, which means that Swift imports it as __NWEndpoint. That frees up the NWEndpoint name to refer exclusively to the Network framework type.
The second entry applies when you’re building with the Swift 5 language mode. It marks the type as not SwiftPrivate. This is a compatible measure to ensure that code written for Swift 5 continues to build.
The Advice
This sections discusses specific cases in this transition.
NWEndpoint and NWPath
In Swift 5 language mode, NWEndpoint and NWPath might refer to either framework, depending on what you’ve imported. Add a qualifier if there’s any ambiguity, for example, Network.NWEndpoint or NetworkExtension.NWEndpoint.
In Swift 6 language mode, NWEndpoint and NWPath always refer to the Network framework type. Add a __ prefix to get to the Network Extension type. For example, use NWEndpoint for the Network framework type and __NWEndpoint for the Network Extension type.
Direct and Through-Tunnel TCP Connections in Swift
To create a connection directly, simply create an NWConnection. This support both TCP and UDP, with or without TLS.
To create a connection through the tunnel, replace code like this:
let c = self.createTCPConnectionThroughTunnel(…)
with code like this:
let params = NWParameters.tcp
params.requiredInterface = self.virtualInterface
let c = NWConnection(to: …, using: params)
This is for TCP but the same basic process applies to UDP.
UDP and App Proxies in Swift
If you’re building an app proxy, transparent proxy, or DNS proxy in Swift and need to handle UDP flows using the new API, adopt the NEAppProxyUDPFlowHandling protocol. So, replace code like this:
class AppProxyProvider: NEAppProxyProvider {
…
override func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
with this:
class AppProxyProvider: NEAppProxyProvider, NEAppProxyUDPFlowHandling {
…
func handleNewUDPFlow(_ flow: NEAppProxyUDPFlow, initialRemoteFlowEndpoint remoteEndpoint: NWEndpoint) -> Bool {
…
}
}
Creating a Network Rule
To create an NWHostEndpoint, replace code like this:
let ep = NWHostEndpoint(hostname: "1.2.3.4", port: "12345")
let r = NENetworkRule(destinationHost: ep, protocol: .TCP)
with this:
let ep = NWEndpoint.hostPort(host: "1.2.3.4", port: 12345)
let r = NENetworkRule(destinationHostEndpoint: ep, protocol: .TCP)
Note how the first label of the initialiser has changed from destinationHost to destinationHostEndpoint.
My external device can generate a fixed Wi-Fi network. When I connect to this Wi-Fi using my iPhone 17 Pro Max (iOS version 26.0.1), and my app tries to establish a connection using the following method, this method returns -1
int connect(int, const struct sockaddr *, socklen_t) __DARWIN_ALIAS_C(connect);
However, when I use other phones, such as iPhone 12, iPhone 8, iPhone 11, etc., to connect to this external device, the above method always returns successfully, with the parameters passed to the method remaining the same.
I also tried resetting the network settings on the iPhone 17 Pro Max (iOS version 26.0.1), but it still cannot establish a connection.
Topic:
App & System Services
SubTopic:
Networking
IMPORTANT The resume rate limiter is now covered by the official documentation. See Use background sessions efficiently within Downloading files in the background. So, the following is here purely for historical perspective.
NSURLSession’s background session support on iOS includes a resume rate limiter. This limiter exists to prevent apps from abusing the background session support in order to run continuously in the background. It works as follows:
nsurlsessiond (the daemon that does all the background session work) maintains a delay value for your app.
It doubles that delay every time it resumes (or relaunches) your app.
It resets that delay to 0 when the user brings your app to the front.
It also resets the delay to 0 if the delay period elapses without it having resumed your app.
When your app creates a new task while it is in the background, the task does not start until that delay has expired.
To understand the impact of this, consider what happens when you download 10 resources. If you pass them to the background session all at once, you see something like this:
Your app creates tasks 1 through 10 in the background session.
nsurlsessiond starts working on the first few tasks.
As tasks complete, nsurlsessiond starts working on subsequent ones.
Eventually all the tasks complete and nsurlsessiond resumes your app.
Now consider what happens if you only schedule one task at a time:
Your app creates task 1.
nsurlsessiond starts working on it.
When it completes, nsurlsessiond resumes your app.
Your app creates task 2.
nsurlsessiond delays the start of task 2 a little bit.
nsurlsessiond starts working on task 2.
When it completes, nsurlsessiond resumes your app.
Your app creates task 3.
nsurlsessiond delays the start of task 3 by double the previous amount.
nsurlsessiond starts working on task 3.
When it completes, nsurlsessiond resumes your app.
Steps 8 through 11 repeat, and each time the delay doubles. Eventually the delay gets so large that it looks like your app has stopped making progress.
If you have a lot of tasks to run then you can mitigate this problem by starting tasks in batches. That is, rather than start just one task in step 1, you would start 100. This only helps up to a point. If you have thousands of tasks to run, you will eventually start seeing serious delays. In that case it’s much better to change your design to use fewer, larger transfers.
Note All of the above applies to iOS 8 and later. Things worked differently in iOS 7. There’s a post on DevForums that explains the older approach.
Finally, keep in mind that there may be other reasons for your task not starting. Specifically, if the task is flagged as discretionary (because you set the discretionary flag when creating the task’s session or because the task was started while your app was in the background), the task may be delayed for other reasons (low power, lack of Wi-Fi, and so on).
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
(r. 22323366)
Hello Apple Support Team,
We are seeing a production crash on iOS 26 devices that appears to originate from Apple system frameworks rather than application code.
Crash Summary
Crash signature: _xzm_xzone_malloc_freelist_outlined
Crashed thread: com.apple.network.connections
Frameworks involved: CFNetwork, Security, libdispatch, libsystem_malloc
Affected OS: iOS 26.x
App built with: Xcode 16
Devices: Multiple models (not device-specific)
Reproducibility: Intermittent, higher frequency during app launch / background networking
Observed Stack Trace (top frames)
_xzm_xzone_malloc_freelist_outlined
dispatch_data_create_alloc
xpc_data_deserialize
SecTrustEvaluateIfNecessary
CFNetwork HTTPProtocol / HTTP3Connection
com.apple.network.connections
App Context
The app uses URLSession for networking.
Multiple third-party SDKs are integrated (Firebase Analytics, Dynatrace, Appsflyer, and similar analytics/monitoring SDKs).
These SDKs perform concurrent background network requests, especially during app launch and foreground transitions.
No unsafe memory operations (manual malloc/free, unsafe pointers, or custom networking stacks) are used in the app code.
Key Observations
The crash is predominantly observed on iOS 26 and not on earlier iOS versions.
Stack traces do not include application symbols.
Disabling or delaying analytics SDK initialization significantly reduces the crash rate.
Reducing concurrent network requests and limiting HTTP/3 usage also mitigates the issue.
This suggests a potential regression in CFNetwork / Network.framework / HTTP/3 handling combined with the new memory allocator (xzone) on iOS 26.
Impact
Random app termination during background networking.
Occurs without a clear deterministic repro path, making it difficult to fully mitigate at the app level.
Request
Could you please help investigate whether this is a known iOS 26 issue related to:
HTTP/3 / QUIC networking
XPC deserialization
Memory allocation in the new xzone allocator
High-concurrency network requests
We would appreciate guidance on:
Recommended mitigations
Whether this issue is already tracked internally
Any best practices for apps integrating multiple analytics SDKs on iOS 26
Crash logs and additional diagnostics can be provided if needed.
Thank you for your support.
Best regards,
Dhananjay
Topic:
App & System Services
SubTopic:
Networking
This is a topic that’s come up a few times on the forums, so I thought I’d write up a summary of the issues I’m aware of. If you have questions or comments, start a new thread in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Network Extension Provider Packaging
There are two ways to package a network extension provider:
App extension ( appex )
System extension ( sysex )
Different provider types support different packaging on different platforms. See TN3134 Network Extension provider deployment for the details.
Some providers, most notably packet tunnel providers on macOS, support both appex and sysex packaging. Sysex packaging has a number of advantages:
It supports direct distribution, using Developer ID signing.
It better matches the networking stack on macOS. An appex is tied to the logged in user, whereas a sysex, and the networking stack itself, is global to the system as a whole.
Given that, it generally makes sense to package your Network Extension (NE) provider as a sysex on macOS. If you’re creating a new product that’s fine, but if you have an existing iOS product that you want to bring to macOS, you have to account for the differences brought on by the move to sysex packaging. Similarly, if you have an existing sysex product on macOS that you want to bring to iOS, you have to account for the appex packaging. This post summarises those changes.
Keep the following in mind while reading this post:
The information here applies to all NE providers that can be packaged as either an appex or a sysex. When this post uses a specific provider type in an example, it’s just an example.
Unless otherwise noted, any information about iOS also applies to iPadOS, tvOS, and visionOS.
Process Lifecycle
With appex packaging, the system typically starts a new process for each instance of your NE provider. For example, with a packet tunnel provider:
When the users starts the VPN, the system creates a process and then instantiates and starts the NE provider in that process.
When the user stops the VPN, the system stops the NE provider and then terminates the process running it.
If the user starts the VPN again, the system creates an entirely new process and instantiates and starts the NE provider in that.
In contrast, with sysex packaging there’s typically a single process that runs all off the sysex’s NE providers. Returning to the packet tunnel provider example:
When the users starts the VPN, the system instantiates and starts the NE provider in the sysex process.
When the user stops the VPN, the system stops and deallocates the NE provider instances, but leaves the sysex process running.
If the user starts the VPN again, the system instantiates and starts a new instances of the NE provider in the sysex process.
This lifecycle reflects how the system runs the NE provider, which in turn has important consequences on what the NE provider can do:
An appex acts like a launchd agent [1], in that it runs in a user context and has access to that user’s state.
A sysex is effectively a launchd daemon. It runs in a context that’s global to the system as a whole. It does not have access to any single user’s state. Indeed, there might be no user logged in, or multiple users logged in.
The following sections explore some consequences of the NE provider lifecycle.
[1] It’s not actually run as a launchd agent. Rather, there’s a system launchd agent that acts as the host for the app extension.
App Groups
With an app extension, the app extension and its container app run as the same user. Thus it’s trivial to share state between them using an app group container.
Note When talking about extensions on Apple platforms, the container app is the app in which the extension is embedded and the host app is the app using the extension. For network extensions the host app is the system itself.
That’s not the case with a system extension. The system extension runs as root whereas the container app runs an the user who launched it. While both programs can claim access to the same app group, the app group container location they receive will be different. For the system extension that location will be inside the home directory for the root user. For the container app the location will be inside the home directory of the user who launched it.
This does not mean that app groups are useless in a Network Extension app. App groups are also a factor in communicating between the container app and its extensions, the subject of the next section.
IMPORTANT App groups have a long and complex history on macOS. For the full story, see App Groups: macOS vs iOS: Working Towards Harmony.
Communicating with Extensions
With an app extension there are two communication options:
App-provider messages
App groups
App-provider messages are supported by NE directly. In the container app, send a message to the provider by calling sendProviderMessage(_:responseHandler:) method. In the appex, receive that message by overriding the handleAppMessage(_:completionHandler:) method.
An appex can also implement inter-process communication (IPC) using various system IPC primitives. Both the container app and the appex claim access to the app group via the com.apple.security.application-groups entitlement. They can then set up IPC using various APIs, as explain in the documentation for that entitlement.
With a system extension the story is very different. App-provider messages are supported, but they are rarely used. Rather, most products use XPC for their communication. In the sysex, publish a named XPC endpoint by setting the NEMachServiceName property in its Info.plist. Listen for XPC connections on that endpoint using the XPC API of your choice.
Note For more information about the available XPC APIs, see XPC Resources.
In the container app, connect to that named XPC endpoint using the XPC Mach service name API. For example, with NSXPCConnection, initialise the connection with init(machServiceName:options:), passing in the string from NEMachServiceName. To maximise security, set the .privileged flag.
Note XPC Resources has a link to a post that explains why this flag is important.
If the container app is sandboxed — necessary if you ship on the Mac App Store — then the endpoint name must be prefixed by an app group ID that’s accessible to that app, lest the App Sandbox deny the connection. See the app groups documentation for the specifics.
When implementing an XPC listener in your sysex, keep in mind that:
Your sysex’s named XPC endpoint is registered in the global namespace. Any process on the system can open a connection to it [1]. Your XPC listener must be prepared for this. If you want to restrict connections to just your container app, see XPC Resources for a link to a post that explains how to do that.
Even if you restrict access in that way, it’s still possible for multiple instances of your container app to be running simultaneously, each with its own connection to your sysex. This happens, for example, if there are multiple GUI users logged in and different users run your container app. Design your XPC protocol with this in mind.
Your sysex only gets one named XPC endpoint, and thus one XPC listener. If your sysex includes multiple NE providers, take that into account when you design your XPC protocol.
[1] Assuming that connection isn’t blocked by some other mechanism, like the App Sandbox.
Inter-provider Communication
A sysex can include multiple types of NE providers. For example, a single sysex might include a content filter and a DNS proxy provider. In that case the system instantiates all of the NE providers in the same sysex process. These instances can communicate without using IPC, for example, by storing shared state in global variables (with suitable locking, of course).
It’s also possible for a single container app to contain multiple sysexen, each including a single NE provider. In that case the system instantiates the NE providers in separate processes, one for each sysex. If these providers need to communicate, they have to use IPC.
In the appex case, the system instantiates each provider in its own process. If two providers need to communicate, they have to use IPC.
Managing Secrets
An appex runs in a user context and thus can store secrets, like VPN credentials, in the keychain. On macOS this includes both the data protection keychain and the file-based keychain. It can also use a keychain access group to share secrets with its container app. See Sharing access to keychain items among a collection of apps.
Note If you’re not familiar with the different types of keychain available on macOS, see TN3137 On Mac keychain APIs and implementations.
A sysex runs in the global context and thus doesn’t have access to user state. It also doesn’t have access to the data protection keychain. It must use the file-based keychain, and specifically the System keychain. That means there’s no good way to share secrets with the container app.
Instead, do all your keychain operations in the sysex. If the container app needs to work with a secret, have it pass that request to the sysex via IPC. For example, if the user wants to use a digital identity as a VPN credential, have the container app get the PKCS#12 data and password and then pass that to the sysex so that it can import the digital identity into the keychain.
Memory Limits
iOS imposes strict memory limits an NE provider appexen [1]. macOS imposes no memory limits on NE provider appexen or sysexen.
[1] While these limits are not documented officially, you can get a rough handle on the current limits by reading the posts in this thread.
Frameworks
If you want to share code between a Mac app and its embedded appex, use a structure like this:
MyApp.app/
Contents/
MacOS/
MyApp
PlugIns/
MyExtension.appex/
Contents/
MacOS/
MyExtension
…
Frameworks/
MyFramework.framework/
…
There’s one copy of the framework, in the app’s Frameworks directory, and both the app and the appex reference it.
This approach works for an appex because the system always loads the appex from your app’s bundle. It does not work for a sysex. When you activate a sysex, the system copies it to a protected location. If that sysex references a framework in its container app, it will fail to start because that framework isn’t copied along with the sysex.
The solution is to structure your app like this:
MyApp.app/
Contents/
MacOS/
MyApp
Library/
SystemExtensions/
MyExtension.systemextension/
Contents/
MacOS/
MyExtension
Frameworks/
MyFramework.framework/
…
…
That is, have both the app and the sysex load the framework from the sysex’s Frameworks directory. When the system copies the sysex to its protected location, it’ll also copy the framework, allowing the sysex to load it.
To make this work you have to change the default rpath configuration set up by Xcode. Read Dynamic Library Standard Setup for Apps to learn how that works and then tweak things so that:
The framework is embedded in the sysex, not the container app.
The container app has an additional LC_RPATH load command for the sysex’s Frameworks directory (@executable_path/../Library/SystemExtensions/MyExtension.systemextension/Contents/Frameworks).
The sysex’s LC_RPATH load command doesn’t reference the container app’s Frameworks directory (@executable_path/../../../../Frameworks) but instead points to the sysex’s Framweorks directory (@executable_path/../Frameworks).
Entitlements
When you build an app with an embedded NE extension, both the app and the extension must be signed with the com.apple.developer.networking.networkextension entitlement. This is a restricted entitlement, that is, it must be authorised by a provisioning profile.
The value of this entitlement is an array, and the values in that array differ depend on your distribution channel:
If you distribute your app directly with Developer ID signing, use the values with the -systemextension suffix.
Otherwise — including when you distribute the app on the App Store and when signing for development — use the values without that suffix.
Make sure you authorise these values with your provisioning profile. If, for example, you use an App Store distribution profile with a Developer ID signed app, things won’t work because the profile doesn’t authorise the right values.
In general, the easiest option is to use Xcode’s automatic code signing. However, watch out for the pitfall described in Exporting a Developer ID Network Extension.
Revision History
2025-11-06 Added the Entitlements section. Explained that, with sysex packaging, multiple instances of your container app might connect simultaneously with your sysex.
2025-09-17 First posted.
General:
Forums subtopic: App & System Services > Networking
DevForums tag: Network Extension
Network Extension framework documentation
Routing your VPN network traffic article
Filtering traffic by URL sample code
Filtering Network Traffic sample code
TN3120 Expected use cases for Network Extension packet tunnel providers technote
TN3134 Network Extension provider deployment technote
TN3165 Packet Filter is not API technote
Network Extension and VPN Glossary forums post
Debugging a Network Extension Provider forums post
Exporting a Developer ID Network Extension forums post
Network Extension Framework Entitlements forums post
Network Extension vs ad hoc techniques on macOS forums post
Network Extension Provider Packaging forums post
NWEndpoint History and Advice forums post
Extra-ordinary Networking forums post
Wi-Fi management:
Wi-Fi Fundamentals forums post
TN3111 iOS Wi-Fi API overview technote
How to modernize your captive network developer news post
iOS Network Signal Strength forums post
See also Networking Resources.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
On Host Names
I commonly see questions like How do I get the device’s host name? This question doesn’t make sense without more context. Apple systems have a variety of things that you might consider to be the host name:
The user-assigned device name — This is a user-visible value, for example, Guy Smiley. People set this in Settings > General > About > Name.
The local host name — This is a DNS name used by Bonjour, for example, guy-smiley.local. By default this is algorithmically derived from the user-assigned device name. On macOS, people can override this in Settings > General > Sharing > Local hostname.
The reverse DNS name associated with the various IP addresses assigned to the device’s various network interfaces
That last one is pretty much useless. You can’t get a single host name because there isn’t a single IP address. For more on that, see Don’t Try to Get the Device’s IP Address.
The other two have well-defined answers, although those answers vary by platform. I’ll talk more about that below.
Before getting to that, however, let’s look at the big picture.
Big Picture
The use cases for the user-assigned device name are pretty clear. I rarely see folks confused about that.
Another use case for this stuff is that you’ve started a server and you want to tell the user how to connect to it. I discuss this in detail in Showing Connection Information in an iOS Server.
However, most folks who run into problems like this do so because they’re suffering from one of the following misconceptions:
The device has a DNS name.
Its DNS name is unique.
Its DNS name doesn’t change.
Its DNS name is in some way useful for networking.
Some of these may be true in some specific circumstances, but none of them are true in all circumstances.
These issues are not unique to Apple platforms — if you look at the Posix spec for gethostname, it says nothing about DNS! — but folks tend to notice these problems more on Apple platforms because Apple devices are often deployed to highly dynamic network environments.
So, before you start using the APIs discussed in this post, think carefully about your assumptions.
And if you actually do want to work with DNS, there are two cases to consider:
If you’re looking for the local host name, use the APIs discussed above.
In other cases, it’s likely that the APIs in this post will not be helpful and you’d be better off focusing on DNS APIs [1].
[1] The API I recommend for this is DNS-SD. See the DNS section in TN3151 Choosing the right networking API.
macOS
To get the user-assigned device name, call the SCDynamicStoreCopyComputerName(_:_:) function. For example:
let userAssignedDeviceName = SCDynamicStoreCopyComputerName(nil, nil) as String?
To get the local host name, call the SCDynamicStoreCopyLocalHostName(_:) function. For example:
let localHostName = SCDynamicStoreCopyLocalHostName(nil) as String?
IMPORTANT This returns just the name label. To form a local host name, append .local..
Both routines return an optional result; code defensively!
If you’re displaying these values to the user, use the System Configuration framework dynamic store notification mechanism to keep your UI up to date.
iOS and Friends
On iOS, iPadOS, tvOS, and visionOS, get the user-assigned device name from the name property on UIDevice.
IMPORTANT Access to this is now restricted. For more on that, see the documentation for the com.apple.developer.device-information.user-assigned-device-name entitlement.
There is no direct mechanism to get the local host name.
Other APIs
There are a wide variety of other APIs that purport to return the host name. These include:
gethostname
The name property on NSHost [1]
The hostName property on NSProcessInfo (ProcessInfo in Swift)
These are problematic for a number of reasons:
They have a complex implementation that makes it hard to predict what value you’ll get back.
They might end up trying to infer the host name from the network environment.
The existing behaviour is hard to change due to compatibility concerns.
Some of them are marked as to-be-deprecated.
IMPORTANT The second issue is particularly problematic, because it involves synchronous DNS requests [2]. That’s slow in general. Worse yet, if the network environment is restricted in some way, these calls can be very slow, taking about 30 seconds to time out.
Given these problems, it’s generally best to avoid calling these routines at all.
[1] It also has a names property, which is a little closer to reality but still not particularly useful.
[2] Actually, that’s not true for gethostname. Rather, that call just returns whatever was last set by sethostname. This is always fast. The System Configuration framework infrastructure calls sethostname to update the host name as the system state changes.
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Network Interface APIs
Most developers don’t need to interact directly with network interfaces. If you do, read this post for a summary of the APIs available to you.
Before you read this, read Network Interface Concepts.
Interface List
The standard way to get a list of interfaces and their addresses is getifaddrs. To learn more about this API, see its man page.
A network interface has four fundamental attributes:
A set of flags — These are packed into a CUnsignedInt. The flags bits are declared in <net/if.h>, starting with IFF_UP.
An interface type — See Network Interface Type, below.
An interface index — Valid indexes are greater than 0.
A BSD interface name. For example, an Ethernet interface might be called en0. The interface name is shared between multiple network interfaces running over a given hardware interface. For example, IPv4 and IPv6 running over that Ethernet interface will both have the name en0.
WARNING BSD interface names are not considered API. There’s no guarantee, for example, that an iPhone’s Wi-Fi interface is en0.
You can map between the last two using if_indextoname and if_nametoindex. See the if_indextoname man page for details.
An interface may also have address information. If present, this always includes the interface address (ifa_addr) and the network mask (ifa_netmask). In addition:
Broadcast-capable interfaces (IFF_BROADCAST) have a broadcast address (ifa_broadaddr, which is an alias for ifa_dstaddr).
Point-to-point interfaces (IFF_POINTOPOINT) have a destination address (ifa_dstaddr).
Calling getifaddrs from Swift is a bit tricky. For an example of this, see QSocket: Interfaces.
IP Address List
Once you have getifaddrs working, it’s relatively easy to manipulate the results to build a list of just IP addresses, a list of IP addresses for each interface, and so on. QSocket: Interfaces has some Swift snippets that show this.
Interface List Updates
The interface list can change over time. Hardware interfaces can be added and removed, network interfaces come up and go down, and their addresses can change. It’s best to avoid caching information from getifaddrs. If thats unavoidable, use the kNotifySCNetworkChange Darwin notification to update your cache. For information about registering for Darwin notifications, see the notify man page (in section 3).
This notification just tells you that something has changed. It’s up to you to fetch the new interface list and adjust your cache accordingly.
You’ll find that this notification is sometimes posted numerous times in rapid succession. To avoid unnecessary thrashing, debounce it.
While the Darwin notification API is easy to call from Swift, Swift does not import kNotifySCNetworkChange. To fix that, define that value yourself, calling a C function to get the value:
var kNotifySCNetworkChange: UnsafePointer<CChar> {
networkChangeNotifyKey()
}
Here’s what that C function looks like:
extern const char * networkChangeNotifyKey(void) {
return kNotifySCNetworkChange;
}
Network Interface Type
There are two ways to think about a network interface’s type. Historically there were a wide variety of weird and wonderful types of network interfaces. The following code gets this legacy value for a specific BSD interface name:
func legacyTypeForInterfaceNamed(_ name: String) -> UInt8? {
var addrList: UnsafeMutablePointer<ifaddrs>? = nil
let err = getifaddrs(&addrList)
// In theory we could check `errno` here but, honestly, what are gonna
// do with that info?
guard
err >= 0,
let first = addrList
else { return nil }
defer { freeifaddrs(addrList) }
return sequence(first: first, next: { $0.pointee.ifa_next })
.compactMap { addr in
guard
let nameC = addr.pointee.ifa_name,
name == String(cString: nameC),
let sa = addr.pointee.ifa_addr,
sa.pointee.sa_family == AF_LINK,
let data = addr.pointee.ifa_data
else { return nil }
return data.assumingMemoryBound(to: if_data.self).pointee.ifi_type
}
.first
}
The values are defined in <net/if_types.h>, starting with IFT_OTHER.
However, this value is rarely useful because many interfaces ‘look like’ Ethernet and thus have a type of IFT_ETHER.
Network framework has the concept of an interface’s functional type. This is an indication of how the interface fits into the system. There are two ways to get an interface’s functional type:
If you’re using Network framework and have an NWInterface value, get the type property.
If not, call ioctl with a SIOCGIFFUNCTIONALTYPE request. The return values are defined in <net/if.h>, starting with IFRTYPE_FUNCTIONAL_UNKNOWN.
Swift does not import SIOCGIFFUNCTIONALTYPE, so it’s best to write this code in a C:
extern uint32_t functionalTypeForInterfaceNamed(const char * name) {
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
struct ifreq ifr = {};
strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
bool success = ioctl(fd, SIOCGIFFUNCTIONALTYPE, &ifr) >= 0;
int junk = close(fd);
assert(junk == 0);
if ( ! success ) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
return ifr.ifr_ifru.ifru_functional_type;
}
Finally, TN3158 Resolving Xcode 15 device connection issues documents the SIOCGIFDIRECTLINK flag as a specific way to identify the network interfaces uses by Xcode for device connection traffic.
Revision History
2025-12-10 Added info about SIOCGIFDIRECTLINK.
2023-07-19 First posted.
This issue has cropped up many times here on DevForums. Someone recently opened a DTS tech support incident about it, and I used that as an opportunity to post a definitive response here.
If you have questions or comments about this, start a new thread and tag it with Network so that I see it.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
iOS Network Signal Strength
The iOS SDK has no general-purpose API that returns Wi-Fi or cellular signal strength in real time. Given that this has been the case for more than 10 years, it’s safe to assume that it’s not an accidental omission but a deliberate design choice.
For information about the Wi-Fi APIs that are available on iOS, see TN3111 iOS Wi-Fi API overview.
Network performance
Most folks who ask about this are trying to use the signal strength to estimate network performance. This is a technique that I specifically recommend against. That’s because it produces both false positives and false negatives:
The network signal might be weak and yet your app has excellent connectivity. For example, an iOS device on stage at WWDC might have terrible WWAN and Wi-Fi signal but that doesn’t matter because it’s connected to the Ethernet.
The network signal might be strong and yet your app has very poor connectivity. For example, if you’re on a train, Wi-Fi signal might be strong in each carriage but the overall connection to the Internet is poor because it’s provided by a single over-stretched WWAN.
The only good way to determine whether connectivity is good is to run a network request and see how it performs. If you’re issuing a lot of requests, use the performance of those requests to build a running estimate of how well the network is doing. Indeed, Apple practices what we preach here: This is exactly how HTTP Live Streaming works.
Remember that network performance can change from moment to moment. The user’s train might enter or leave a tunnel, the user might step into a lift, and so on. If you build code to estimate the network performance, make sure it reacts to such changes.
Keeping all of the above in mind, iOS 26 beta has two new APIs related to this issue:
Network framework now offers a linkQuality property. See this post for my take on how to use this effectively.
The WirelessInsights framework can notify you of anticipated WWAN condition changes.
But what about this code I found on the ’net?
Over the years various folks have used various unsupported techniques to get around this limitation. If you find code on the ’net that, say, uses KVC to read undocumented properties, or grovels through system logs, or walks the view hierarchy of the status bar, don’t use it. Such techniques are unsupported and, assuming they haven’t broken yet, are likely to break in the future.
But what about Hotspot Helper?
Hotspot Helper does have an API to read Wi-Fi signal strength, namely, the signalStrength property. However, this is not a general-purpose API. Like the rest of Hotspot Helper, this is tied to the specific use case for which it was designed. This value only updates in real time for networks that your hotspot helper is managing, as indicated by the isChosenHelper property.
But what about MetricKit?
MetricKit is so cool. Amongst other things, it supports the MXCellularConditionMetric payload, which holds a summary of the cellular conditions while your app was running. However, this is not a real-time signal strength value.
But what if I’m working for a carrier?
This post is about APIs in the iOS SDK. If you’re working for a carrier, discuss your requirements with your carrier’s contact at Apple.
Revision History
2025-07-02 Updated to cover new features in the iOS 16 beta. Made other minor editorial changes.
2022-12-01 First posted.
I'm using NERelayManager to set Relay configuration which all works perfectly fine.
I then do a curl with the included domain and while I see QUIC connection succeeds with relay server and H3 request goes to the server, the connection gets abruptly closed by the client with "Software caused connection abort".
Console has this information:
default 09:43:04.459517-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Transport protocol connected (quic)
default 09:43:04.459901-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.131s
default 09:43:04.460745-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Joined protocol connected (http3)
default 09:43:04.461049-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.133s
default 09:43:04.465115-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancel
default 09:43:04.465238-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancelled
[C2 FCB1CFD1-4BF9-4E37-810E-81265D141087 192.168.4.139:53898<->192.168.4.197:4433]
Connected Path: satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi
Duration: 0.121s, QUIC @0.000s took 0.000s, TLS 1.3 took 0.111s
bytes in/out: 2880/4322, packets in/out: 4/8, rtt: 0.074s, retransmitted bytes: 0, out-of-order bytes: 0
ecn packets sent/acked/marked/lost: 3/1/0/0
default 09:43:04.465975-0700 curl nw_flow_disconnected [C2 192.168.4.197:4433 cancelled multipath-socket-flow ((null))] Output protocol disconnected
default 09:43:04.469189-0700 curl nw_endpoint_proxy_receive_report [C1.1 IPv4#124bdc4d:80 in_progress proxy (satisfied (Path is satisfied), interface: en0[802.11], ipv4, ipv6, dns, proxy, uses wifi)] Privacy proxy failed with error 53 ([C1.1.1] masque Proxy: http://192.168.4.197:4433)
default 09:43:04.469289-0700 curl [C1.1.1 192.168.4.197:4433 failed socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:failed_connect @0.141s, error Software caused connection abort
Relay server otherwise works fine with our QUIC MASQUE clients but not with built-in macOS MASQUE client. Anything I'm missing?
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Broadcasts and Multicasts, Hints and Tips
I regularly see folks struggle with broadcasts and multicasts on Apple platforms. This post is my attempt to clear up some of the confusion.
This post covers both IPv4 and IPv6. There is, however, a key difference. In IPv4, broadcasts and multicasts are distinct concepts. In contrast, IPv6 doesn’t support broadcast as such; rather, it treats broadcasts as a special case of multicasts. IPv6 does have an all nodes multicast address, but it’s rarely used.
Before reading this post, I suggest you familiarise yourself with IP addresses in general. A good place to start is The Fount of All Knowledge™.
Service Discovery
A lot of broadcast and multicast questions come from folks implementing their own service discovery protocol. I generally recommend against doing that, for the reasons outlined in the Service Discovery section of Don’t Try to Get the Device’s IP Address.
There are, however, some good reasons to implement a custom service discovery protocol. For example, you might be working with an accessory that only supports this custom protocol [1]. If you must implement your own service discovery protocol, read this post and also read the advice in Don’t Try to Get the Device’s IP Address.
IMPORTANT Sometimes I see folks implementing their own version of mDNS. This is almost always a mistake:
If you’re using third-party tooling that includes its own mDNS implementation, it’s likely that this tooling allows you to disable that implementation and instead rely on the Bonjour support that’s built-in to all Apple platforms.
If you’re doing some weird low-level thing with mDNS or DNS-SD, it’s likely that you can do that with the low-level DNS-SD API.
[1] And whose firmware you can’t change! I talk more about this in Working with a Wi-Fi Accessory.
API Choice
Broadcasts and multicasts typically use UDP [1]. TN3151 Choosing the right networking API describes two recommended UDP APIs:
Network framework
BSD Sockets
Our general advice is to prefer Network framework over BSD Sockets, but UDP broadcasts and multicasts are an exception to that rule. Network framework has very limited UDP broadcast support. And while it’s support for UDP multicasts is less limited, it’s still not sufficient for all UDP applications. In cases where Network framework is not sufficient, BSD Sockets is your only option.
[1] It is possible to broadcast and multicast at the Ethernet level, but I almost never see questions about that.
UDP Broadcasts in Network Framework
Historically I’ve claimed that Network framework was useful for UDP broadcasts is very limited circumstances (for example, in the footnote on this post). I’ve since learnt that this isn’t the case. Or, more accurately, this support is so limited (r. 122924701) as to be useless in practice.
For the moment, if you want to work with UDP broadcasts, your only option is BSD Sockets.
UDP Multicasts in Network Framework
Network framework supports UDP multicast using the NWConnectionGroup class with the NWMulticastGroup group descriptor. This support has limits. The most significant limit is that it doesn’t support broadcasts; it’s for multicasts only.
Note This only relevant to IPv4. Remember that IPv6 doesn’t support broadcasts as a separate concept.
There are other limitations, but I don’t have a good feel for them. I’ll update this post as I encounter issues.
Local Network Privacy
Some Apple platforms support local network privacy. This impacts broadcasts and multicasts in two ways:
Broadcasts and multicasts require local network access, something that’s typically granted by the user.
Broadcasts and multicasts are limited by a managed entitlement (except on macOS).
TN3179 Understanding local network privacy has lots of additional info on this topic, including the list of platforms to which it applies.
Send, Receive, and Interfaces
When you broadcast or multicast, there’s a fundamental asymmetry between send and receive:
You can reasonable receive datagrams on all broadcast-capable interfaces.
But when you send a datagram, it has to target a specific interface.
The sending behaviour is the source of many weird problems. Consider the IPv4 case. If you send a directed broadcast, you can reasonably assume it’ll be routed to the correct interface based on the network prefix. But folks commonly send an all-hosts broadcast (255.255.255.255), and it’s not obvious what happens in that case.
Note If you’re unfamiliar with the terms directed broadcast and all-hosts broadcast, see IP address.
The exact rules for this are complex, vary by platform, and can change over time. For that reason, it’s best to write your broadcast code to be interface specific. That is:
Identify the interfaces on which you want to work.
Create a socket per interface.
Bind that socket to that interface.
Note Use the IP_BOUND_IF (IPv4) or IPV6_BOUND_IF (IPv6) socket options rather than binding to the interface address, because the interface address can change over time.
Extra-ordinary Networking has links to other posts which discuss these concepts and the specific APIs in more detail.
Miscellaneous Gotchas
A common cause of mysterious broadcast and multicast problems is folks who hard code BSD interface names, like en0. Doing that might work for the vast majority of users but then fail in some obscure scenarios.
BSD interface names are not considered API and you must not hard code them. Extra-ordinary Networking has links to posts that describe how to enumerate the interface list and identify interfaces of a specific type.
Don’t assume that there’ll be only one interface of a given type. This might seem obviously true, but it’s not. For example, our platforms support peer-to-peer Wi-Fi, so each device has multiple Wi-Fi interfaces.
When sending a broadcast, don’t forget to enable the SO_BROADCAST socket option.
If you’re building a sandboxed app on the Mac, working with UDP requires both the com.apple.security.network.client and com.apple.security.network.server entitlements.
Some folks reach for broadcasts or multicasts because they’re sending the same content to multiple devices and they believe that it’ll be faster than unicasts. That’s not true in many cases, especially on Wi-Fi. For more on this, see the Broadcasts section of Wi-Fi Fundamentals.
Snippets
To send a UDP broadcast:
func broadcast(message: Data, to interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
try fd.setSocketOption(SOL_SOCKET, SO_BROADCAST, 1 as CInt)
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { throw … }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.send(data: message, to: ("255.255.255.255", 2222))
}
Note These snippet uses the helpers from Calling BSD Sockets from Swift.
To receive UDP broadcasts:
func receiveBroadcasts(from interfaceName: String) throws {
let fd = try FileDescriptor.socket(AF_INET, SOCK_DGRAM, 0)
defer { try! fd.close() }
let interfaceIndex = if_nametoindex(interfaceName)
guard interfaceIndex > 0 else { fatalError() }
try fd.setSocketOption(IPPROTO_IP, IP_BOUND_IF, interfaceIndex)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEADDR, 1 as CInt)
try fd.setSocketOption(SOL_SOCKET, SO_REUSEPORT, 1 as CInt)
try fd.bind("0.0.0.0", 2222)
while true {
let (data, (sender, port)) = try fd.receiveFrom()
…
}
}
IMPORTANT This code runs synchronously, which is less than ideal. In a real app you’d run the receive asynchronously, for example, using a Dispatch read source. For an example of how to do that, see this post.
If you need similar snippets for multicast, lemme know. I’ve got them lurking on my hard disk somewhere (-:
Other Resources
Apple’s official documentation for BSD Sockets is in the man pages. See Reading UNIX Manual Pages. Of particular interest are:
setsockopt man page
ip man page
ip6 man page
If you’re not familiar with BSD Sockets, I strongly recommend that you consult third-party documentation for it. BSD Sockets is one of those APIs that looks simple but, in reality, is ridiculously complicated. That’s especially true if you’re trying to write code that works on BSD-based platforms, like all of Apple’s platforms, and non-BSD-based platforms, like Linux.
I specifically recommend UNIX Network Programming, by Stevens et al, but there are lots of good alternatives.
https://unpbook.com
Revision History
2025-09-01 Fixed a broken link.
2025-01-16 First posted.