How often do we see control filter start and stop?
I read somewhere that data filter is long lived and control Filter is short lived.
When does the operating system kills the control filter process?
Networking
RSS for tagExplore the networking protocols and technologies used by the device to connect to Wi-Fi networks, Bluetooth devices, and cellular data services.
Selecting any option will automatically load the page
Post
Replies
Boosts
Views
Activity
I am developing an application that processes a video file stored on a server. I use URLSessionDataTask with a delegate handler to download the file.
It is not necessary to download the entire file at once. Instead, I can load small chunks of the file as needed. This approach helps minimize memory consumption.
I am trying to design a network layer that supports this behavior. Ideally, I would like to have an interface similar to:
func readMoreData(length: Int) async throws -> Data
Problems I Encountered:
It seems that URLSessionDataTask does not allow controlling how many bytes will be downloaded. It always downloads the entire request.
If I call suspend on URLSessionDataTask, the network activity does not stop, and the file keeps downloading.
If I upgrade the dataTask to a StreamTask, the file still downloads, though reading bytes can be done through the StreamTask API.
I would prefer behavior similar to AsyncHTTPClient (a Swift Server library) or Network Framework. These frameworks allow controlling the number of bytes downloaded at a time. Unfortunately, they do not fit the specific requirements of my project.
Am I correct in understanding that controlling the download process is not possible with URLSessionDataTask?
As a possible solution, I am considering using HTTP Range Requests, though this would increase the number of additional server requests, which I would like to avoid.
Topic:
App & System Services
SubTopic:
Networking
General:
Forums subtopic: App & System Services > Networking
TN3151 Choosing the right networking API
Networking Overview document — Despite the fact that this is in the archive, this is still really useful.
TLS for App Developers forums post
Choosing a Network Debugging Tool documentation
WWDC 2019 Session 712 Advances in Networking, Part 1 — This explains the concept of constrained networking, which is Apple’s preferred solution to questions like How do I check whether I’m on Wi-Fi?
TN3135 Low-level networking on watchOS
TN3179 Understanding local network privacy
Adapt to changing network conditions tech talk
Understanding Also-Ran Connections forums post
Extra-ordinary Networking forums post
Foundation networking:
Forums tags: Foundation, CFNetwork
URL Loading System documentation — NSURLSession, or URLSession in Swift, is the recommended API for HTTP[S] on Apple platforms.
Moving to Fewer, Larger Transfers forums post
Testing Background Session Code forums post
Network framework:
Forums tag: Network
Network framework documentation — Network framework is the recommended API for TCP, UDP, and QUIC on Apple platforms.
Building a custom peer-to-peer protocol sample code (aka TicTacToe)
Implementing netcat with Network Framework sample code (aka nwcat)
Configuring a Wi-Fi accessory to join a network sample code
Moving from Multipeer Connectivity to Network Framework forums post
NWEndpoint History and Advice forums post
Network Extension (including Wi-Fi on iOS):
See Network Extension Resources
Wi-Fi Fundamentals
TN3111 iOS Wi-Fi API overview
Wi-Fi Aware framework documentation
Wi-Fi on macOS:
Forums tag: Core WLAN
Core WLAN framework documentation
Wi-Fi Fundamentals
Secure networking:
Forums tags: Security
Apple Platform Security support document
Preventing Insecure Network Connections documentation — This is all about App Transport Security (ATS).
WWDC 2017 Session 701 Your Apps and Evolving Network Security Standards [1] — This is generally interesting, but the section starting at 17:40 is, AFAIK, the best information from Apple about how certificate revocation works on modern systems.
Available trusted root certificates for Apple operating systems support article
Requirements for trusted certificates in iOS 13 and macOS 10.15 support article
About upcoming limits on trusted certificates support article
Apple’s Certificate Transparency policy support article
What’s new for enterprise in iOS 18 support article — This discusses new key usage requirements.
Technote 2232 HTTPS Server Trust Evaluation
Technote 2326 Creating Certificates for TLS Testing
QA1948 HTTPS and Test Servers
Miscellaneous:
More network-related forums tags: 5G, QUIC, Bonjour
On FTP forums post
Using the Multicast Networking Additional Capability forums post
Investigating Network Latency Problems forums post
WirelessInsights framework documentation
iOS Network Signal Strength forums post
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] This video is no longer available from Apple, but the URL should help you locate other sources of this info.
I would like to test running some Thread Networking code on my MacOS machine:
import ThreadNetwork
let client = THClient()
let bIsPreferredAvailable = await client.isPreferredAvailable()
but I get some errors when trying to create an instance of the THClient class:
Client: -[THClient connectToXPCService]_block_invoke - CTCS XPC Client is interrupted.
Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc}
Client: -[THClient init] - XPC Client Init Failed
Invalidating XPC connection.
Client: -[THClient getConnectionEntitlementValidity]_block_invoke - clientProxyWithErrorHandler Error: Error Domain=NSCocoaErrorDomain Code=4097 "connection to service named com.apple.ThreadNetwork.xpc" UserInfo={NSDebugDescription=connection to service named com.apple.ThreadNetwork.xpc}
How can I get the code to run?
Hello,
Our app uses Network Extension / Packet Tunnel Provider to establish VPN connections on macOS and iOS.
We have observed that after creating a utun device and adding any IPv4 routes (NEPacketTunnelNetworkSettings.IPv4Settings), the OS automatically adds several host routes via utun to services such as Akamai, Apple Push, etc. These routes appear to correspond to TCP flows that were active at the moment the VPN connection was established. When a particular TCP flow ends, the corresponding host route is deleted. We understand this is likely intended to avoid breaking existing TCP connections.
However, we find the behavior of migrating existing TCP flows to the new utun interface simply because any IPv4 route is added somewhat questionable. This approach would make sense in a "full-tunnel" scenario — for example, when all IPv4 traffic (e.g., 0.0.0.0/0) is routed through the tunnel — but not necessarily in a "split-tunnel" configuration where only specific IPv4 routes are added.
Is there any way to control or influence this behavior?
Would it be possible for FlowDivert to differentiate between full-tunnel and split-tunnel cases, and only preserve existing TCP flows via utun in the full-tunnel scenario?
Thank you.
At WWDC 2015 Apple announced two major enhancements to the Network Extension framework:
Network Extension providers — These are app extensions that let you insert your code at various points within the networking stack, including:
Packet tunnels via NEPacketTunnelProvider
App proxies via NEAppProxyProvider
Content filters via NEFilterDataProvider and NEFilterControlProvider
Hotspot Helper (NEHotspotHelper) — This allows you to create an app that assists the user in navigating a hotspot (a Wi-Fi network where the user must interact with the network in order to get access to the wider Internet).
Originally, using any of these facilities required authorisation from Apple. Specifically, you had to apply for, and be granted access to, a managed capability. In Nov 2016 this policy changed for Network Extension providers. Any developer can now use the Network Extension provider capability like they would any other capability.
There is one exception to this rule: Network Extension app push providers, introduced by iOS 14 in 2020, still requires that Apple authorise the use of a managed capability. To apply for that, follow the link in Local push connectivity.
Also, the situation with Hotspot Helpers remains the same: Using a Hotspot Helper, requires that Apple authorise that use via a managed capability. To apply for that, follow the link in Hotspot helper.
IMPORTANT Pay attention to this quote from the documentation:
NEHotspotHelper is only useful for hotspot integration. There are
both technical and business restrictions that prevent it from being
used for other tasks, such as accessory integration or Wi-Fi based
location.
The rest of this document answers some frequently asked questions about the Nov 2016 change.
#1 — Has there been any change to the OS itself?
No, this change only affects the process by which you get the capabilities you need in order to use existing Network Extension framework facilities. Previously these were managed capabilities, meaning their use was authorised by Apple. Now, except for app push providers and Hotspot Helper, you can enable the necessary capabilities using Xcode’s Signing & Capabilities editor or the Developer website.
IMPORTANT Some Network Extension providers have other restrictions on their use. For example, a content filter can only be used on a supervised device. These restrictions are unchanged. See TN3134 Network Extension provider deployment for the details.
#2 — How exactly do I enable the Network Extension provider capability?
In the Signing & Capabilities editor, add the Network Extensions capability and then check the box that matches the provider you’re creating.
In the Certificates, Identifiers & Profiles section of the Developer website, when you add or edit an App ID, you’ll see a new capability listed, Network Extensions. Enable that capability in your App ID and then regenerate the provisioning profiles based on that App ID.
A newly generated profile will include the com.apple.developer.networking.networkextension entitlement in its allowlist; this is an array with an entry for each of the supported Network Extension providers. To confirm that this is present, dump the profile as shown below.
$ security cms -D -i NETest.mobileprovision
…
<plist version="1.0">
<dict>
…
<key>Entitlements</key>
<dict>
<key>com.apple.developer.networking.networkextension</key>
<array>
<string>packet-tunnel-provider</string>
<string>content-filter-provider</string>
<string>app-proxy-provider</string>
… and so on …
</array>
…
</dict>
…
</dict>
</plist>
#3 — I normally use Xcode’s Signing & Capabilities editor to manage my entitlements. Do I have to use the Developer website for this?
No. Xcode 11 and later support this capability in the Signing & Capabilities tab of the target editor (r. 28568128 ).
#4 — Can I still use Xcode’s “Automatically manage signing” option?
Yes. Once you modify your App ID to add the Network Extension provider capability, Xcode’s automatic code signing support will include the entitlement in the allowlist of any profiles that it generates based on that App ID.
#5 — What should I do if I previously applied for the Network Extension provider managed capability and I’m still waiting for a reply?
Consider your current application cancelled, and use the new process described above.
#6 — What should I do if I previously applied for the Hotspot Helper managed capability and I’m still waiting for a reply?
Apple will continue to process Hotspot Helper managed capability requests and respond to you in due course.
#7 — What if I previously applied for both Network Extension provider and Hotspot Helper managed capabilities?
Apple will ignore your request for the Network Extension provider managed capability and process it as if you’d only asked for the Hotspot Helper managed capability.
#8 — On the Mac, can Developer ID apps host Network Extension providers?
Yes, but there are some caveats:
This only works on macOS 10.15 or later.
Your Network Extension provider must be packaged as a system extension, not an app extension.
You must use the *-systemextension values for the Network Extension entitlement (com.apple.developer.networking.networkextension).
For more on this, see Exporting a Developer ID Network Extension.
#9 — After moving to the new process, my app no longer has access to the com.apple.managed.vpn.shared keychain access group. How can I regain that access?
Access to this keychain access group requires another managed capability. If you need that, please open a DTS code-level support request and we’ll take things from there.
IMPORTANT This capability is only necessary if your VPN supports configuration via a configuration profile and needs to access credentials from that profile (as discussed in the Profile Configuration section of the NETunnelProviderManager Reference). Many VPN apps don’t need this facility.
If you were previously granted the Network Extension managed capability (via the process in place before Nov 2016), make sure you mention that; restoring your access to the com.apple.managed.vpn.shared keychain access group should be straightforward in that case.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Revision History
2025-11-11 Removed the discussion of TSI assets because those are no longer a thing.
2025-09-12 Adopted the code-level support request terminology. Made other minor editorial changes.
2023-01-11 Added a discussion of Network Extension app push providers. Added a link to Exporting a Developer ID Network Extension. Added a link to TN3134. Made significant editorial changes.
2020-02-27 Fixed the formatting. Updated FAQ#3. Made minor editorial changes.
2020-02-16 Updated FAQ#8 to account for recent changes. Updated FAQ#3 to account for recent Xcode changes. Made other editorial changes.
2016-01-25 Added FAQ#9.
2016-01-6 Added FAQ#8.
2016-11-11 Added FAQ#5, FAQ#6 and FAQ#7.
2016-11-11 First posted.
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Network Interface APIs
Most developers don’t need to interact directly with network interfaces. If you do, read this post for a summary of the APIs available to you.
Before you read this, read Network Interface Concepts.
Interface List
The standard way to get a list of interfaces and their addresses is getifaddrs. To learn more about this API, see its man page.
A network interface has four fundamental attributes:
A set of flags — These are packed into a CUnsignedInt. The flags bits are declared in <net/if.h>, starting with IFF_UP.
An interface type — See Network Interface Type, below.
An interface index — Valid indexes are greater than 0.
A BSD interface name. For example, an Ethernet interface might be called en0. The interface name is shared between multiple network interfaces running over a given hardware interface. For example, IPv4 and IPv6 running over that Ethernet interface will both have the name en0.
WARNING BSD interface names are not considered API. There’s no guarantee, for example, that an iPhone’s Wi-Fi interface is en0.
You can map between the last two using if_indextoname and if_nametoindex. See the if_indextoname man page for details.
An interface may also have address information. If present, this always includes the interface address (ifa_addr) and the network mask (ifa_netmask). In addition:
Broadcast-capable interfaces (IFF_BROADCAST) have a broadcast address (ifa_broadaddr, which is an alias for ifa_dstaddr).
Point-to-point interfaces (IFF_POINTOPOINT) have a destination address (ifa_dstaddr).
Calling getifaddrs from Swift is a bit tricky. For an example of this, see QSocket: Interfaces.
IP Address List
Once you have getifaddrs working, it’s relatively easy to manipulate the results to build a list of just IP addresses, a list of IP addresses for each interface, and so on. QSocket: Interfaces has some Swift snippets that show this.
Interface List Updates
The interface list can change over time. Hardware interfaces can be added and removed, network interfaces come up and go down, and their addresses can change. It’s best to avoid caching information from getifaddrs. If thats unavoidable, use the kNotifySCNetworkChange Darwin notification to update your cache. For information about registering for Darwin notifications, see the notify man page (in section 3).
This notification just tells you that something has changed. It’s up to you to fetch the new interface list and adjust your cache accordingly.
You’ll find that this notification is sometimes posted numerous times in rapid succession. To avoid unnecessary thrashing, debounce it.
While the Darwin notification API is easy to call from Swift, Swift does not import kNotifySCNetworkChange. To fix that, define that value yourself, calling a C function to get the value:
var kNotifySCNetworkChange: UnsafePointer<CChar> {
networkChangeNotifyKey()
}
Here’s what that C function looks like:
extern const char * networkChangeNotifyKey(void) {
return kNotifySCNetworkChange;
}
Network Interface Type
There are two ways to think about a network interface’s type. Historically there were a wide variety of weird and wonderful types of network interfaces. The following code gets this legacy value for a specific BSD interface name:
func legacyTypeForInterfaceNamed(_ name: String) -> UInt8? {
var addrList: UnsafeMutablePointer<ifaddrs>? = nil
let err = getifaddrs(&addrList)
// In theory we could check `errno` here but, honestly, what are gonna
// do with that info?
guard
err >= 0,
let first = addrList
else { return nil }
defer { freeifaddrs(addrList) }
return sequence(first: first, next: { $0.pointee.ifa_next })
.compactMap { addr in
guard
let nameC = addr.pointee.ifa_name,
name == String(cString: nameC),
let sa = addr.pointee.ifa_addr,
sa.pointee.sa_family == AF_LINK,
let data = addr.pointee.ifa_data
else { return nil }
return data.assumingMemoryBound(to: if_data.self).pointee.ifi_type
}
.first
}
The values are defined in <net/if_types.h>, starting with IFT_OTHER.
However, this value is rarely useful because many interfaces ‘look like’ Ethernet and thus have a type of IFT_ETHER.
Network framework has the concept of an interface’s functional type. This is an indication of how the interface fits into the system. There are two ways to get an interface’s functional type:
If you’re using Network framework and have an NWInterface value, get the type property.
If not, call ioctl with a SIOCGIFFUNCTIONALTYPE request. The return values are defined in <net/if.h>, starting with IFRTYPE_FUNCTIONAL_UNKNOWN.
Swift does not import SIOCGIFFUNCTIONALTYPE, so it’s best to write this code in a C:
extern uint32_t functionalTypeForInterfaceNamed(const char * name) {
int fd = socket(AF_INET, SOCK_DGRAM, 0);
if (fd < 0) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
struct ifreq ifr = {};
strlcpy(ifr.ifr_name, name, sizeof(ifr.ifr_name));
bool success = ioctl(fd, SIOCGIFFUNCTIONALTYPE, &ifr) >= 0;
int junk = close(fd);
assert(junk == 0);
if ( ! success ) { return IFRTYPE_FUNCTIONAL_UNKNOWN; }
return ifr.ifr_ifru.ifru_functional_type;
}
Finally, TN3158 Resolving Xcode 15 device connection issues documents the SIOCGIFDIRECTLINK flag as a specific way to identify the network interfaces uses by Xcode for device connection traffic.
Revision History
2025-12-10 Added info about SIOCGIFDIRECTLINK.
2023-07-19 First posted.
From time to time the subject of NECP grows up, both here on DevForums and in DTS cases. I’ve posted about this before but I wanted to collect those tidbits into single coherent post.
If you have questions or comments, start a new thread in the App & System Services > Networking subtopic and tag it with Network Extension. That way I’ll be sure to see it go by.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
A Peek Behind the NECP Curtain
NECP stands for Network Extension Control Protocol. It’s a subsystem within the Apple networking stack that controls which programs have access to which network interfaces. It’s vitally important to the Network Extension subsystem, hence the name, but it’s used in many different places. Indeed, a very familiar example of its use is the Settings > Mobile Data [1] user interface on iOS.
NECP has no explicit API, although there are APIs that are offer some insight into its state. Continuing the Settings > Mobile Data example above, there is a little-known API, CTCellularData in the Core Telephony framework, that returns whether your app has access to WWAN.
Despite having no API, NECP is still relevant to developers. The Settings > Mobile Data example is one place where it affects app developers but it’s most important for Network Extension (NE) developers. A key use case for NECP is to prevent VPN loops. When starting an NE provider, the system configures the NECP policy for the NE provider’s process to prevent it from using a VPN interface. This means that you can safely open a network connection inside your VPN provider without having to worry about its traffic being accidentally routed back to you. This is why, for example, an NE packet tunnel provider can use any networking API it wants, including BSD Sockets, to run its connection without fear of creating a VPN loop [1].
One place that NECP shows up regularly is the system log. Next time you see a system log entry like this:
type: debug
time: 15:02:54.817903+0000
process: Mail
subsystem: com.apple.network
category: connection
message: nw_protocol_socket_set_necp_attributes [C723.1.1:1] setsockopt 39 SO_NECP_ATTRIBUTES
…
you’ll at least know what the necp means (-:
Finally, a lot of NECP infrastructure is in the Darwin open source. As with all things in Darwin, it’s fine to poke around and see how your favourite feature works, but do not incorporate any information you find into your product. Stuff you uncover by looking in Darwin is not considered API.
[1] Settings > Cellular Data if you speak American (-:
[2] Network Extension providers can call the createTCPConnection(to:enableTLS:tlsParameters:delegate:) method to create an NWTCPConnection [3] that doesn’t run through the tunnel. You can use that if it’s convenient but you don’t need to use it.
[3] NWTCPConnection is now deprecated, but there are non-deprecated equivalents. For the full story, see NWEndpoint History and Advice.
Revision History
2025-12-12 Replaced “macOS networking stack” with “Apple networking stack” to avoid giving the impression that this is all about macOS. Added a link to NWEndpoint History and Advice. Made other minor editorial changes.
2023-02-27 First posted.
I'm using NERelayManager to set Relay configuration which all works perfectly fine.
I then do a curl with the included domain and while I see QUIC connection succeeds with relay server and H3 request goes to the server, the connection gets abruptly closed by the client with "Software caused connection abort".
Console has this information:
default 09:43:04.459517-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Transport protocol connected (quic)
default 09:43:04.459901-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.131s
default 09:43:04.460745-0700 curl nw_flow_connected [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] Joined protocol connected (http3)
default 09:43:04.461049-0700 curl [C1.1.1 192.168.4.197:4433 in_progress socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:finish_transport @0.133s
default 09:43:04.465115-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancel
default 09:43:04.465238-0700 curl [C2 E47A3A0C-7275-4F6B-AEDF-59077ABAE34B 192.168.4.197:4433 quic, multipath service: 1, tls, definite, attribution: developer] cancelled
[C2 FCB1CFD1-4BF9-4E37-810E-81265D141087 192.168.4.139:53898<->192.168.4.197:4433]
Connected Path: satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi
Duration: 0.121s, QUIC @0.000s took 0.000s, TLS 1.3 took 0.111s
bytes in/out: 2880/4322, packets in/out: 4/8, rtt: 0.074s, retransmitted bytes: 0, out-of-order bytes: 0
ecn packets sent/acked/marked/lost: 3/1/0/0
default 09:43:04.465975-0700 curl nw_flow_disconnected [C2 192.168.4.197:4433 cancelled multipath-socket-flow ((null))] Output protocol disconnected
default 09:43:04.469189-0700 curl nw_endpoint_proxy_receive_report [C1.1 IPv4#124bdc4d:80 in_progress proxy (satisfied (Path is satisfied), interface: en0[802.11], ipv4, ipv6, dns, proxy, uses wifi)] Privacy proxy failed with error 53 ([C1.1.1] masque Proxy: http://192.168.4.197:4433)
default 09:43:04.469289-0700 curl [C1.1.1 192.168.4.197:4433 failed socket-flow (satisfied (Path is satisfied), viable, interface: en0[802.11], ipv4, ipv6, dns, uses wifi)] event: flow:failed_connect @0.141s, error Software caused connection abort
Relay server otherwise works fine with our QUIC MASQUE clients but not with built-in macOS MASQUE client. Anything I'm missing?
Transport Layer Security (TLS) is the most important security protocol on the Internet today. Most notably, TLS puts the S into HTTPS, adding security to the otherwise insecure HTTP protocol.
IMPORTANT TLS is the successor to the Secure Sockets Layer (SSL) protocol. SSL is no longer considered secure and it’s now rarely used in practice, although many folks still say SSL when they mean TLS.
TLS is a complex protocol. Much of that complexity is hidden from app developers but there are places where it’s important to understand specific details of the protocol in order to meet your requirements. This post explains the fundamentals of TLS, concentrating on the issues that most often confuse app developers.
Note The focus of this is TLS-PKI, where PKI stands for public key infrastructure. This is the standard TLS as deployed on the wider Internet. There’s another flavour of TLS, TLS-PSK, where PSK stands for pre-shared key. This has a variety of uses, but an Apple platforms we most commonly see it with local traffic, for example, to talk to a Wi-Fi based accessory. For more on how to use TLS, both TLS-PKI and TLS-PSK, in a local context, see TLS For Accessory Developers.
Server Certificates
For standard TLS to work the server must have a digital identity, that is, the combination of a certificate and the private key matching the public key embedded in that certificate. TLS Crypto Magic™ ensures that:
The client gets a copy of the server’s certificate.
The client knows that the server holds the private key matching the public key in that certificate.
In a typical TLS handshake the server passes the client a list of certificates, where item 0 is the server’s certificate (the leaf certificate), item N is (optionally) the certificate of the certificate authority that ultimately issued that certificate (the root certificate), and items 1 through N-1 are any intermediate certificates required to build a cryptographic chain of trust from 0 to N.
Note The cryptographic chain of trust is established by means of digital signatures. Certificate X in the chain is issued by certificate X+1. The owner of certificate X+1 uses their private key to digitally sign certificate X. The client verifies this signature using the public key embedded in certificate X+1. Eventually this chain terminates in a trusted anchor, that is, a certificate that the client trusts by default. Typically this anchor is a self-signed root certificate from a certificate authority.
Note Item N is optional for reasons I’ll explain below. Also, the list of intermediate certificates may be empty (in the case where the root certificate directly issued the leaf certificate) but that’s uncommon for servers in the real world.
Once the client gets the server’s certificate, it evaluates trust on that certificate to confirm that it’s talking to the right server. There are three levels of trust evaluation here:
Basic X.509 trust evaluation checks that there’s a cryptographic chain of trust from the leaf through the intermediates to a trusted root certificate. The client has a set of trusted root certificates built in (these are from well-known certificate authorities, or CAs), and a site admin can add more via a configuration profile.
This step also checks that none of the certificates have expired, and various other more technical criteria (like the Basic Constraints extension).
Note This explains why the server does not have to include the root certificate in the list of certificates it passes to the client; the client has to have the root certificate installed if trust evaluation is to succeed.
In addition, TLS trust evaluation (per RFC 2818) checks that the DNS name that you connected to matches the DNS name in the certificate. Specifically, the DNS name must be listed in the Subject Alternative Name extension.
Note The Subject Alternative Name extension can also contain IP addresses, although that’s a much less well-trodden path. Also, historically it was common to accept DNS names in the Common Name element of the Subject but that is no longer the case on Apple platforms.
App Transport Security (ATS) adds its own security checks.
Basic X.509 and TLS trust evaluation are done for all TLS connections. ATS is only done on TLS connections made by URLSession and things layered on top URLSession (like WKWebView). In many situations you can override trust evaluation; for details, see Technote 2232 HTTPS Server Trust Evaluation). Such overrides can either tighten or loosen security. For example:
You might tighten security by checking that the server certificate was issued by a specific CA. That way, if someone manages to convince a poorly-managed CA to issue them a certificate for your server, you can detect that and fail.
You might loosen security by adding your own CA’s root certificate as a trusted anchor.
IMPORTANT If you rely on loosened security you have to disable ATS. If you leave ATS enabled, it requires that the default server trust evaluation succeeds regardless of any customisations you do.
Mutual TLS
The previous section discusses server trust evaluation, which is required for all standard TLS connections. That process describes how the client decides whether to trust the server. Mutual TLS (mTLS) is the opposite of that, that is, it’s the process by which the server decides whether to trust the client.
Note mTLS is commonly called client certificate authentication. I avoid that term because of the ongoing industry-wide confusion between certificates and digital identities. While it’s true that, in mTLS, the server authenticates the client certificate, to set this up on the client you need a digital identity, not a certificate.
mTLS authentication is optional. The server must request a certificate from the client and the client may choose to supply one or not (although if the server requests a certificate and the client doesn’t supply one it’s likely that the server will then fail the connection).
At the TLS protocol level this works much like it does with the server certificate. For the client to provide this certificate it must apply a digital identity, known as the client identity, to the connection. TLS Crypto Magic™ assures the server that, if it gets a certificate from the client, the client holds the private key associated with that certificate.
Where things diverge is in trust evaluation. Trust evaluation of the client certificate is done on the server, and the server uses its own rules to decided whether to trust a specific client certificate. For example:
Some servers do basic X.509 trust evaluation and then check that the chain of trust leads to one specific root certificate; that is, a client is trusted if it holds a digital identity whose certificate was issued by a specific CA.
Some servers just check the certificate against a list of known trusted client certificates.
When the client sends its certificate to the server it actually sends a list of certificates, much as I’ve described above for the server’s certificates. In many cases the client only needs to send item 0, that is, its leaf certificate. That’s because:
The server already has the intermediate certificates required to build a chain of trust from that leaf to its root.
There’s no point sending the root, as I discussed above in the context of server trust evaluation.
However, there are no hard and fast rules here; the server does its client trust evaluation using its own internal logic, and it’s possible that this logic might require the client to present intermediates, or indeed present the root certificate even though it’s typically redundant. If you have problems with this, you’ll have to ask the folks running the server to explain its requirements.
Note If you need to send additional certificates to the server, pass them to the certificates parameter of the method you use to create your URLCredential (typically init(identity:certificates:persistence:)).
One thing that bears repeating is that trust evaluation of the client certificate is done on the server, not the client. The client doesn’t care whether the client certificate is trusted or not. Rather, it simply passes that certificate the server and it’s up to the server to make that decision.
When a server requests a certificate from the client, it may supply a list of acceptable certificate authorities [1]. Safari uses this to filter the list of client identities it presents to the user. If you are building an HTTPS server and find that Safari doesn’t show the expected client identity, make sure you have this configured correctly. If you’re building an iOS app and want to implement a filter like Safari’s, get this list using:
The distinguishedNames property, if you’re using URLSession
The sec_protocol_metadata_access_distinguished_names routine, if you’re using Network framework
[1] See the certificate_authorities field in Section 7.4.4 of RFC 5246, and equivalent features in other TLS versions.
Self-Signed Certificates
Self-signed certificates are an ongoing source of problems with TLS. There’s only one unequivocally correct place to use a self-signed certificate: the trusted anchor provided by a certificate authority.
One place where a self-signed certificate might make sense is in a local environment, that is, securing a connection between peers without any centralised infrastructure. However, depending on the specific circumstances there may be a better option. TLS For Accessory Developers discusses this topic in detail.
Finally, it’s common for folks to use self-signed certificates for testing. I’m not a fan of that approach. Rather, I recommend the approach described in QA1948 HTTPS and Test Servers. For advice on how to set that up using just your Mac, see TN2326 Creating Certificates for TLS Testing.
TLS Standards
RFC 6101 The Secure Sockets Layer (SSL) Protocol Version 3.0 (historic)
RFC 2246 The TLS Protocol Version 1.0
RFC 4346 The Transport Layer Security (TLS) Protocol Version 1.1
RFC 5246 The Transport Layer Security (TLS) Protocol Version 1.2
RFC 8446 The Transport Layer Security (TLS) Protocol Version 1.3
RFC 4347 Datagram Transport Layer Security
RFC 6347 Datagram Transport Layer Security Version 1.2
RFC 9147 The Datagram Transport Layer Security (DTLS) Protocol Version 1.3
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Revision History:
2025-11-21 Clearly defined the terms TLS-PKI and TLS-PSK.
2024-03-19 Adopted the term mutual TLS in preference to client certificate authentication throughout, because the latter feeds into the ongoing certificate versus digital identity confusion. Defined the term client identity. Added the Self-Signed Certificates section. Made other minor editorial changes.
2023-02-28 Added an explanation mTLS acceptable certificate authorities.
2022-12-02 Added links to the DTLS RFCs.
2022-08-24 Added links to the TLS RFCs. Made other minor editorial changes.
2022-06-03 Added a link to TLS For Accessory Developers.
2021-02-26 Fixed the formatting. Clarified that ATS only applies to URLSession. Minor editorial changes.
2020-04-17 Updated the discussion of Subject Alternative Name to account for changes in the 2019 OS releases. Minor editorial updates.
2018-10-29 Minor editorial updates.
2016-11-11 First posted.
On "Accessory Interface Specification CarPlay Addendum R10", it says that it is recommended that the accessory uses a MIMO (2x2) hardware configuration, does this imply that WiFi 5 and SISO (1X1) will be phased out in the near future?
When will WiFi 6 MIMO (2x2) become mandatory?
On "Accessory Interface Specification CarPlay Addendum R10", it says that Spatial Audio is mandatory. However, for aftermarket in-vehicle infotainment (IVI) system due to the number of speakers are less than 6, is it allowed not to support spatial audio for this type of aftermarket IVI system?
Hi,
We're receiving data via centralManager.centralManager.scanForPeripherals, with no options or filtering (for now), and in the func centralManager(_ central: CBCentralManager, didDiscover peripheral: CBPeripheral, advertisementData: [String : Any], rssi RSSI: NSNumber) callback, we get advertisementData for each bluetooth device found.
But, I know one of my BLE devices is sending an Eddystone TLM payload, which generally is received into the kCBAdvDataServiceData part of the advertisementData dictionary, but, it doesn't show up.
What is happening however (when comparing to other devices that do show that payload), is I've noticed the "isConnectable" part is false, and others have it true. Technically we're not "connecting" as such as we're simply reading passive advertisement data, but does that have any bearing on how CoreBluetooth decides to build up it's AdvertisementData response?
Example (with serviceData; and I know this has Eddystone TLM)
["kCBAdvDataLocalName": FSC-BP105N, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataServiceUUIDs": <__NSArrayM 0x300b71f80>(
FEAA,
FEF5
)
, "kCBAdvDataTimestamp": 773270526.26279, "kCBAdvDataServiceData": {
FFF0 = {length = 11, bytes = 0x36021892dc0d3015aeb164};
FEAA = {length = 14, bytes = 0x20000be680000339ffa229bbce8a};
}, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataIsConnectable": 1]
Vs
This also has Eddystone TLM configured
["kCBAdvDataLocalName": 100FA9FD-7000-1000, "kCBAdvDataIsConnectable": 0, "kCBAdvDataRxPrimaryPHY": 1, "kCBAdvDataRxSecondaryPHY": 0, "kCBAdvDataTimestamp": 773270918.97273]
Any insight would be great to understand if the presence of other flags drive the exposure of ServiceData or not...
I'm developing an application using the accessory setup kit (BLE) on iOS 18+. An important aspect of the connection process is being able to find and choose the correct device.
I noticed on iOS 18.2 that I was able to both scroll through the discovered accessories as well as view the advertised name. However, after upgrading to 18.7.2, only a single device is viewable and the advertised name is no longer available. Is there a trigger for this feature that I need to enable or was this "multiple discovery" feature removed? If so, why?
For important background information, read Extra-ordinary Networking before reading this.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
Working with a Wi-Fi Accessory
Building an app that works with a Wi-Fi accessory presents specific challenges. This post discusses those challenges and some recommendations for how to address them.
Note While my focus here is iOS, much of the info in this post applies to all Apple platforms.
IMPORTANT iOS 18 introduced AccessorySetupKit, a framework to simplify the discovery and configuration of an accessory. I’m not fully up to speed on that framework myself, but I encourage you to watch WWDC 2024 Session 10203 Meet AccessorySetupKit and read the framework documentation.
IMPORTANT iOS 26 introduced WiFiAware, a framework for setting up communication with Wi-Fi Aware accessories. Wi-Fi Aware is an industry standard to securely discover, pair, and communicate with nearby devices. This is especially useful for stand-alone accessories (defined below). For more on this framework, watch WWDC 2025 Session 228 Supercharge device connectivity with Wi-Fi Aware and read the framework documentation. For information on how to create a Wi-Fi Aware accessory that works with iPhone, go to Developer > Accessories, download Accessory Design Guidelines for Apple Devices, and review the Wi-Fi Aware chapter.
Accessory Categories
I classify Wi-Fi accessories into three different categories.
A bound accessory is ultimately intended to join the user’s Wi-Fi network. It may publish its own Wi-Fi network during the setup process, but the goal of that process is to get the accessory on to the existing network. Once that’s done, your app interacts with the accessory using ordinary networking APIs.
An example of a bound accessory is a Wi-Fi capable printer.
A stand-alone accessory publishes a Wi-Fi network at all times. An iOS device joins that network so that your app can interact with it. The accessory never provides access to the wider Internet.
An example of a stand-alone accessory is a video camera that users take with them into the field. You might want to write an app that joins the camera’s network and downloads footage from it.
A gateway accessory is one that publishes a Wi-Fi network that provides access to the wider Internet. Your app might need to interact with the accessory during the setup process, but after that it’s useful as is.
An example of this is a Wi-Fi to WWAN gateway.
Not all accessories fall neatly into these categories. Indeed, some accessories might fit into multiple categories, or transition between categories. Still, I’ve found these categories to be helpful when discussing various accessory integration challenges.
Do You Control the Firmware?
The key question here is Do you control the accessory’s firmware? If so, you have a bunch of extra options that will make your life easier. If not, you have to adapt to whatever the accessory’s current firmware does.
Simple Improvements
If you do control the firmware, I strongly encourage you to:
Support IPv6
Implement Bonjour [1]
These two things are quite easy to do — most embedded platforms support them directly, so it’s just a question of turning them on — and they will make your life significantly easier:
Link-local addresses are intrinsic to IPv6, and IPv6 is intrinsic to Apple platforms. If your accessory supports IPv6, you’ll always be able to communicate with it, regardless of how messed up the IPv4 configuration gets.
Similarly, if you support Bonjour, you’ll always be able to find your accessory on the network.
[1] Bonjour is an Apple term for three Internet standards:
RFC 3927 Dynamic Configuration of IPv4 Link-Local Addresses
RFC 6762 Multicast DNS
RFC 6763 DNS-Based Service Discovery
WAC
For a bound accessory, support Wireless Accessory Configuration (WAC). This is a relatively big ask — supporting WAC requires you to join the MFi Program — but it has some huge benefits:
You don’t need to write an app to configure your accessory. The user will be able to do it directly from Settings.
If you do write an app, you can use the EAWiFiUnconfiguredAccessoryBrowser class to simplify your configuration process.
HomeKit
For a bound accessory that works in the user’s home, consider supporting HomeKit. This yields the same onboarding benefits as WAC, and many other benefits as well. Also, you can get started with the HomeKit Open Source Accessory Development Kit (ADK).
Bluetooth LE
If your accessory supports Bluetooth LE, think about how you can use that to improve your app’s user experience. For an example of that, see SSID Scanning, below.
Claiming the Default Route, Or Not?
If your accessory publishes a Wi-Fi network, a key design decision is whether to stand up enough infrastructure for an iOS device to make it the default route.
IMPORTANT To learn more about how iOS makes the decision to switch the default route, see The iOS Wi-Fi Lifecycle and Network Interface Concepts.
This decision has significant implications. If the accessory’s network becomes the default route, most network connections from iOS will be routed to your accessory. If it doesn’t provide a path to the wider Internet, those connections will fail. That includes connections made by your own app.
Note It’s possible to get around this by forcing your network connections to run over WWAN. See Binding to an Interface in Network Interface Techniques and Running an HTTP Request over WWAN. Of course, this only works if the user has WWAN. It won’t help most iPad users, for example.
OTOH, if your accessory’s network doesn’t become the default route, you’ll see other issues. iOS will not auto-join such a network so, if the user locks their device, they’ll have to manually join the network again.
In my experience a lot of accessories choose to become the default route in situations where they shouldn’t. For example, a bound accessory is never going to be able to provide a path to the wider Internet so it probably shouldn’t become the default route. However, there are cases where it absolutely makes sense, the most obvious being that of a gateway accessory.
Acting as a Captive Network, or Not?
If your accessory becomes the default route you must then decide whether to act like a captive network or not.
IMPORTANT To learn more about how iOS determines whether a network is captive, see The iOS Wi-Fi Lifecycle.
For bound and stand-alone accessories, becoming a captive network is generally a bad idea. When the user joins your network, the captive network UI comes up and they have to successfully complete it to stay on the network. If they cancel out, iOS will leave the network. That makes it hard for the user to run your app while their iOS device is on your accessory’s network.
In contrast, it’s more reasonable for a gateway accessory to act as a captive network.
SSID Scanning
Many developers think that TN3111 iOS Wi-Fi API overview is lying when it says:
iOS does not have a general-purpose API for Wi-Fi scanning
It is not.
Many developers think that the Hotspot Helper API is a panacea that will fix all their Wi-Fi accessory integration issues, if only they could get the entitlement to use it.
It will not.
Note this comment in the official docs:
NEHotspotHelper is only useful for hotspot integration. There are both technical and business restrictions that prevent it from being used for other tasks, such as accessory integration or Wi-Fi based location.
Even if you had the entitlement you would run into these technical restrictions. The API was specifically designed to support hotspot navigation — in this context hotspots are “Wi-Fi networks where the user must interact with the network to gain access to the wider Internet” — and it does not give you access to on-demand real-time Wi-Fi scan results.
Many developers look at another developer’s app, see that it’s displaying real-time Wi-Fi scan results, and think there’s some special deal with Apple that’ll make that work.
There is not.
In reality, Wi-Fi accessory developers have come up with a variety of creative approaches for this, including:
If you have a bound accessory, you might add WAC support, which makes this whole issue go away.
In many cases, you can avoid the need for Wi-Fi scan results by adopting AccessorySetupKit.
You might build your accessory with a barcode containing the info required to join its network, and scan that from your app. This is the premise behind the Configuring a Wi-Fi Accessory to Join the User’s Network sample code.
You might configure all your accessories to have a common SSID prefix, and then take advantage of the prefix support in NEHotspotConfigurationManager. See Programmatically Joining a Network, below.
You might have your app talk to your accessory via some other means, like Bluetooth LE, and have the accessory scan for Wi-Fi networks and return the results.
Programmatically Joining a Network
Network Extension framework has an API, NEHotspotConfigurationManager, to programmatically join a network, either temporarily or as a known network that supports auto-join. For the details, see Wi-Fi Configuration.
One feature that’s particularly useful is it’s prefix support, allowing you to create a configuration that’ll join any network with a specific prefix. See the init(ssidPrefix:) initialiser for the details.
For examples of how to use this API, see:
Configuring a Wi-Fi Accessory to Join the User’s Network — It shows all the steps for one approach for getting a non-WAC bound accessory on to the user’s network.
NEHotspotConfiguration Sample — Use this to explore the API in general.
Secure Communication
Users expect all network communication to be done securely. For some ideas on how to set up a secure connection to an accessory, see TLS For Accessory Developers.
Revision History
2025-11-05 Added a link to the Accessory Design Guidelines for Apple Devices.
2025-06-19 Added a preliminary discussion of Wi-Fi Aware.
2024-09-12 Improved the discussion of AccessorySetupKit.
2024-07-16 Added a preliminary discussion of AccessorySetupKit.
2023-10-11 Added the HomeKit section. Fixed the link in Secure Communication to point to TLS For Accessory Developers.
2023-07-23 First posted.
This issue has cropped up many times here on DevForums. Someone recently opened a DTS tech support incident about it, and I used that as an opportunity to post a definitive response here.
If you have questions or comments about this, start a new thread and tag it with Network so that I see it.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
iOS Network Signal Strength
The iOS SDK has no general-purpose API that returns Wi-Fi or cellular signal strength in real time. Given that this has been the case for more than 10 years, it’s safe to assume that it’s not an accidental omission but a deliberate design choice.
For information about the Wi-Fi APIs that are available on iOS, see TN3111 iOS Wi-Fi API overview.
Network performance
Most folks who ask about this are trying to use the signal strength to estimate network performance. This is a technique that I specifically recommend against. That’s because it produces both false positives and false negatives:
The network signal might be weak and yet your app has excellent connectivity. For example, an iOS device on stage at WWDC might have terrible WWAN and Wi-Fi signal but that doesn’t matter because it’s connected to the Ethernet.
The network signal might be strong and yet your app has very poor connectivity. For example, if you’re on a train, Wi-Fi signal might be strong in each carriage but the overall connection to the Internet is poor because it’s provided by a single over-stretched WWAN.
The only good way to determine whether connectivity is good is to run a network request and see how it performs. If you’re issuing a lot of requests, use the performance of those requests to build a running estimate of how well the network is doing. Indeed, Apple practices what we preach here: This is exactly how HTTP Live Streaming works.
Remember that network performance can change from moment to moment. The user’s train might enter or leave a tunnel, the user might step into a lift, and so on. If you build code to estimate the network performance, make sure it reacts to such changes.
Keeping all of the above in mind, iOS 26 beta has two new APIs related to this issue:
Network framework now offers a linkQuality property. See this post for my take on how to use this effectively.
The WirelessInsights framework can notify you of anticipated WWAN condition changes.
But what about this code I found on the ’net?
Over the years various folks have used various unsupported techniques to get around this limitation. If you find code on the ’net that, say, uses KVC to read undocumented properties, or grovels through system logs, or walks the view hierarchy of the status bar, don’t use it. Such techniques are unsupported and, assuming they haven’t broken yet, are likely to break in the future.
But what about Hotspot Helper?
Hotspot Helper does have an API to read Wi-Fi signal strength, namely, the signalStrength property. However, this is not a general-purpose API. Like the rest of Hotspot Helper, this is tied to the specific use case for which it was designed. This value only updates in real time for networks that your hotspot helper is managing, as indicated by the isChosenHelper property.
But what about MetricKit?
MetricKit is so cool. Amongst other things, it supports the MXCellularConditionMetric payload, which holds a summary of the cellular conditions while your app was running. However, this is not a real-time signal strength value.
But what if I’m working for a carrier?
This post is about APIs in the iOS SDK. If you’re working for a carrier, discuss your requirements with your carrier’s contact at Apple.
Revision History
2025-07-02 Updated to cover new features in the iOS 16 beta. Made other minor editorial changes.
2022-12-01 First posted.
Are the network relays introduced in 2023 and
https://developer.apple.com/videos/play/wwdc2023/10002/
the same thing as the Private Relay introduced in 2021?
https://developer.apple.com/videos/play/wwdc2021/10096/
We are considering verifying the relay function, but we are not sure whether they are the same function or different functions.
https://developer.apple.com/documentation/devicemanagement/relay?language=objc
Topic:
App & System Services
SubTopic:
Networking
HI,
I am currently developing an app that utilizes Wi-Fi Aware.
According to the Wi-Fi Aware framework examples and the WWDC25 session on Wi-Fi Aware, discovery is handled using DevicePairingView and DevicePicker from the DeviceDiscoveryUI module.
However, these SwiftUI views present their connection UI modally when tapped. My app's design requires the ability to control the presentation of this UI programmatically, rather than relying on a user tap.
While inspecting the DeviceDiscoveryUI module, I found DDDevicePairingViewController and DDDevicePickerViewController, which appear to be the UIViewController counterparts to the SwiftUI views.
The initializer for DDDevicePairingViewController accepts a ListenerProvider, so it seems I can pass the same ListenerProvider instance that is used with the DevicePairingView.
However, the initializer for DDDevicePickerViewController requires an NWBrowser.Descriptor, which seems incompatible with the parameters used for the SwiftUI DevicePicker.
I have two main questions:
(1) Can DDDevicePairingViewController and DDDevicePickerViewController be officially used for Wi-Fi Aware pairing?
(2) Are there any plans to provide more customization or programmatic control over the DevicePairingView and DevicePicker (for example, allowing us to trigger their modal presentation programmatically)?
Thank you.
Topic:
App & System Services
SubTopic:
Networking
If I run an app with a Message Filter Extension on a handset with iOS 18.2 then it runs fine, however if I run the exact same app with no changes on a different phone which has iOS 17.6.1 installed then the following error occurs when the extension is enabled within Settings:
dyld[631]: Symbol not found: _$sSo40ILMessageFilterCapabilitiesQueryResponseC14IdentityLookupE21promotionalSubActionsSaySo0abI6ActionVGvs
Questions about FTP crop up from time-to-time here on DevForums. In most cases I write a general “don’t use FTP” response, but I don’t have time to go into all the details. I’ve created this post as a place to collect all of those details, so I can reference them in other threads.
IMPORTANT Apple’s official position on FTP is:
All our FTP APIs have been deprecated, and you should avoid using deprecated APIs.
Apple has been slowly removing FTP support from the user-facing parts of our system. The most recent example of this is that we removed the ftp command-line tool in macOS 10.13.
You should avoid the FTP protocol and look to adopt more modern alternatives.
The rest of this post is an informational explanation of the overall FTP picture.
This post is locked so I can keep it focused. If you have questions or comments, please do create a new thread in the App & System Services > Networking subtopic and I’ll respond there.
Don’t Use FTP
FTP is a very old and very crufty protocol. Certain things that seem obvious to us now — like being able to create a GUI client that reliably shows a directory listing in a platform-independent manner — aren’t possible to do in FTP. However, by far the biggest problem with FTP is that it provides no security [1]. Specifically, the FTP protocol:
Provides no on-the-wire privacy, so anyone can see the data you transfer
Provides no client-authenticates-server authentication, so you have no idea whether you’re talking to the right server
Provides no data integrity, allowing an attacker to munge your data in transit
Transfers user names and passwords in the clear
Using FTP for anonymous downloads may be acceptable (see the explanation below) but most other uses of FTP are completely inappropriate for the modern Internet.
IMPORTANT You should only use FTP for anonymous downloads if you have an independent way to check the integrity of the data you’ve downloaded. For example, if you’re downloading a software update, you could use code signing to check its integrity. If you don’t check the integrity of the data you’ve downloaded, an attacker could substitute a malicious download instead. This would be especially bad in, say, the software update case.
These fundamental problems with the FTP protocol mean that it’s not a priority for Apple. This is reflected in the available APIs, which is the subject of the next section.
FTP APIs
Apple provides two FTP APIs:
All Apple platforms provide FTP downloads via URLSession.
Most Apple platforms (everything except watchOS) support CFFTPStream, which allows for directory listings, downloads, uploads, and directory creation.
All of these FTP APIs are now deprecated:
URLSession was deprecated for the purposes of FTP in the 2022 SDKs (macOS 13, iOS 16, iPadOS 16, tvOS 16, watchOS 9) [2].
CFFTPStream was deprecated in the 2016 SDKs (macOS 10.11, iOS 9, iPadOS 9, tvOS 9).
CFFTPStream still works about as well as it ever did, which is not particularly well. Specifically:
There is at least one known crashing bug (r. 35745763), albeit one that occurs quite infrequently.
There are clear implementation limitations — like the fact that CFFTPCreateParsedResourceListing assumes a MacRoman text encoding (r. 7420589) — that won’t be fixed.
If you’re looking for an example of how to use these APIs, check out SimpleFTPSample.
Note This sample hasn’t been updated since 2013 and is unlikely to ever be updated given Apple’s position on FTP.
The FTP support in URLSession has significant limitations:
It only supports FTP downloads; there’s no support for uploads or any other FTP operations.
It doesn’t support resumable FTP downloads [3].
It doesn’t work in background sessions. That prevents it from running FTP downloads in the background on iOS.
It’s only supported in classic loading mode. See the usesClassicLoadingMode property and the doc comments in <Foundation/NSURLSession.h>.
If Apple’s FTP APIs are insufficient for your needs, you’ll need to write or acquire your own FTP library. Before you do that, however, consider switching to an alternative protocol. After all, if you’re going to go to the trouble of importing a large FTP library into your code base, you might as well import a library for a better protocol. The next section discusses some options in this space.
Alternative Protocols
There are numerous better alternatives to FTP:
HTTPS is by far the best alternative to FTP, offering good security, good APIs on Apple platforms, good server support, and good network compatibility. Implementing traditional FTP operations over HTTPS can be a bit tricky. One possible way forward is to enable DAV extensions on the server.
FTPS is FTP over TLS (aka SSL). While FTPS adds security to the protocol, which is very important, it still inherits many of FTP’s other problems. Personally I try to avoid this protocol.
SFTP is a file transfer protocol that’s completely unrelated to FTP. It runs over SSH, making it a great alternative in many of the ad hoc setups that traditionally use FTP.
Apple doesn’t have an API for either FTPS or SFTP, although on macOS you may be able to make some headway by invoking the sftp command-line tool.
Share and Enjoy
—
Quinn “The Eskimo!” @ Developer Technical Support @ Apple
let myEmail = "eskimo" + "1" + "@" + "apple.com"
[1] In another thread someone asked me about FTP’s other problems, those not related to security, so let’s talk about that.
One of FTP’s implicit design goals was to provide cross-platform support that exposes the target platform. You can think of FTP as being kinda like telnet. When you telnet from Unix to VMS, it doesn’t aim to abstract away VMS commands, so that you can type Unix commands at the VMS prompt. Rather, you’re expected to run VMS commands. FTP is (a bit) like that.
This choice made sense back when the FTP protocol was invented. Folks were expecting to use FTP via a command-line client, so there was a human in the loop. If they ran a command and it produced VMS-like output, that was fine because they knew that they were FTPing into a VMS machine.
However, most users today are using GUI clients, and this design choice makes it very hard to create a general GUI client for FTP. Let’s consider the simple problem of getting the contents of a directory. When you send an FTP LIST command, the server would historically run the platform native directory list command and pipe the results back to you. To create a GUI client you have to parse that data to extract the file names. Doing that is a serious challenge. Indeed, just the first step, working out the text encoding, is a challenge. Many FTP servers use UTF-8, but some use ISO-Latin-1, some use other standard encodings, some use Windows code pages, and so on.
I say “historically” above because there have been various efforts to standardise this stuff, both in the RFCs and in individual server implementations. However, if you’re building a general client you can’t rely on these efforts. After all, the reason why folks continue to use FTP is because of it widespread support.
[2] To quote the macOS 13 Ventura Release Notes:
FTP is deprecated for URLSession and related APIs. Please adopt
modern secure networking protocols such as HTTPS. (92623659)
[3] Although you can implement resumable downloads using the lower-level CFFTPStream API, courtesy of the kCFStreamPropertyFTPFileTransferOffset property.
Revision History
2025-10-06 Explained that URLSession only supports FTP in classic loading mode. Made other minor editorial changes.
2024-04-15 Added a footnote about FTP’s other problems. Made other minor editorial changes.
2022-08-09 Noted that the FTP support in URLSession is now deprecated. Made other minor editorial changes.
2021-04-06 Fixed the formatting. Fixed some links.
2018-02-23 First posted.
Esim activation. Assuming I already have card data, I use the universal link https://esimsetup.apple.com/esim_qrcode_provisioning?carddata= to install it.
However, it always ends up in the system Settings app.
The flow: 1. Click the link -> 2. Redirect to Settings -> 3. Show activation dialog.
Is there anyway to make the activation flow stay within the app? I couldn't find any documentation for that.
This is an example from Revolut app, where the whole flow above happens without leaving the app.